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Abstract
Objectives. An urgent task is to improve the functional architecture of cluster computing systems by introducing 
methodologies for creating software at the applied and intermediate levels based on formalized specifications. One 
such methodology is based on the use of automatic specifications for computer systems software. The complexity 
of resolving the problem is caused by the branching of the algorithms built, as well as the presence of cyclic sections. 
The execution time of  the branched sections of  the program and the number of cycles run depends on  the type 
of conditions entered. In practice it can be determined using a detailed simulation model and analysis of the control 
program created on its basis. The aim of the work is to find approaches to the definition of functional architecture 
which can be applied practically at the main levels of the subject orientation of cluster computing systems.
Methods. The methods proposed and used are based on the concept of organization and research of cluster-type 
computing systems with a functional architecture as defined by executable automatic models.
Results. The paper proposes methods of  constructing automatic and logical-probabilistic models of  cluster 
computing systems and creating software tools based on  them. The concept of  the logical-probabilistic model 
“temporal probabilistic system of  canonical equations  (CES)” is  introduced. This enables a  visual formalization 
to  be obtained, as  well as  implementation of  automatic models and work programs typical for cluster and other 
applications. It also significantly reduced the number of  “incremental” additions when enumerating discrete time 
moments. The main feature of the new logical-probabilistic model is the preservation of the original CES in its basis.
Conclusions. The work concludes that the choice of the system and functional architecture of a computing cluster 
should be determined not so much by the peak characteristics of the communication equipment specified by the 
manufacturer, as by the actual indicators achieved at the level of user applications and cluster usage modes. It is also 
shown that executable automatic models can be applied at almost all levels of cluster computing systems subject 
orientation.

Keywords: cluster computing system, intermediate level application, functional architecture, finite automaton 
models, logical-probabilistic model, logical-algebraic model, query processing modes, simulation results
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Резюме
Цели. Актуальной является задача совершенствования функциональной архитектуры кластерных вычисли-
тельных систем за счет внедрения методологий создания программного обеспечения прикладного и проме-
жуточного уровней на основе формализованных спецификаций. Одна из таких методологий основана на ис-
пользовании автоматных спецификаций программного обеспечения вычислительных систем. Сложность 
решения задачи вызвана разветвленностью построенных алгоритмов, а также наличием циклических участ-
ков. Время выполнения разветвленных участков программы и число проходимых циклов зависят от вида вво-
димых условий и на практике могут быть определены при помощи детальной имитационной модели и ана-
лиза созданной на ее основе управляющей программы. Цель работы – нахождение подходов к определению 
функциональной архитектуры, которые возможно применять практически на основных уровнях предметной 
ориентации кластерных вычислительных систем.
Методы. Предлагаемые и  использованные методы основаны на  концепции организации и  исследования 
вычислительных систем кластерного типа с функциональной архитектурой, определяемой исполнимыми ав-
томатными моделями.
Результаты. Предложены методы построения автоматных и  логико-вероятностных моделей кластерных 
вычислительных систем и создания на этой основе программных средств. Вводится понятие логико-веро-
ятностной модели «темпоральная вероятностная система канонических уравнений», которая позволит по-
лучить наглядную формализацию и реализацию автоматных моделей и рабочих программ, характерных для 
кластерных и других приложений, и в существенной степени сократить число «инкрементных» сложений при 
перечислении моментов дискретного времени. Главной особенностью новой логико-вероятностной модели 
является сохранение в ее основе исходной системы канонических уравнений.
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INTRODUCTION

Clustering is one of the most modern trends in 
the field of computing systems development. The 
emergence of cluster computing systems is due to 
advances in network technologies, most often local 
ones. When connecting machines into a  cluster, 
computers are combined using network technologies 
based on bus architecture or a switch. This has led to an 
increase in the number of computing clusters purchased 
or leased as cloud services [1]. According to forecasts 
by a  number of marketing companies, the cluster 
computing market is expected to grow to USD102.4 bn 
by 2032.1

The scope of application of clusters in the organization 
of information and subject-oriented systems used for 
the collection, processing, and subsequent analysis of 
information is constantly expanding. At the same time, 
the limitations of simple homogeneous cluster systems 
complicate the creation of systems which provide a high 
level of structural and functional dynamics and effective 
problem orientation based on the development of the 
middleware level software.

The rapid development of applications based on 
machine learning and artificial intelligence has created 
a need to train a large number of models. At the current 
time, one of the most powerful supercomputers in the world 
is the Colossus supercomputer cluster based on Nvidia 
graphics processing units  (Nvidia  Corporation, USA). 
This cluster can theoretically achieve a  performance 
of about 497.9  exaflops  (497900000  teraflops), setting 
new standards in supercomputing power. The goal of 
xAI (USA) is to increase the number of graphics processing 
units  (GPUs) in Colossus to 1  million in the coming 

1  Cluster Computing Market Overview. https://www.
marketresearchfuture.com/reports/cluster-computing-market-1746. 
Accessed June 02, 2025.

years.2 Currently, the xAI supercluster has begun training 
a  large language model  (LLM) artificial intelligence 
system using more than 200000  Nvidia  H100,  H200, 
and GB200  graphics processing units optimized for 
deep learning neural network tasks. The cluster network 
is based on a  high-speed Nvidia Spectrum-X Ethernet 
switch with a bandwidth of up to 800 Gb/s.3

The functional architecture of computing clusters 
is based on the coordinated operation of the following 
components: workflow management system; cluster 
monitoring system; libraries for parallel processing; 
cluster management tools; global process space 
connecting all cluster nodes; resource management 
system; network  (possibly parallel) file system; and 
network services, including cloud services, providing 
access to the cluster for many users  [1]. It is assumed 
that current issues in the field of high-performance 
computing will remain relevant in the future: the need 
for further significant increases in parallelism and data 
transfer speeds; the development of high-performance 
computing architecture and technology; the trend 
towards workflows and use cases extending beyond 
data centers; the existence of many powerful scientific 
and industrial drivers; and the transition from high-
performance computing as isolated systems to high-
performance infrastructures [2].

An important step in the development of science 
and industry is linked to the development and 

2  Tyson M. Elon Musk fires up ‘the most powerful AI 
cluster in the world’ to create the ‘world’s most powerful AI’ by 
December – system uses 100000 Nvidia H100 GPUs on a single 
fabric. Published July  22, 2024. https://www.tomshardware.com/
pc-components/gpus/elon-musk-fires-up-the-most-powerful-ai-
training-cluster-in-the-world-uses-100000-nvidia-h100-gpus-on-a-
single-fabric. Accessed June 02, 2025.

3  Half a million GPUs in four months: how Musk is building 
the world’s most powerful cluster. https://www.braintools.ru/
article/18041. Accessed June 02, 2025 (in Russ.).

Выводы. Сделан вывод о том, что выбор системной и функциональной архитектуры вычислительного класте-
ра должен определяться не столько указанными производителем пиковыми характеристиками коммуника-
ционной аппаратуры, сколько реальными показателями, достигаемыми на уровне приложений пользовате-
лей и режимов использования кластера. Показано, что исполнимые автоматные модели могут применяться 
практически на всех уровнях предметной ориентации кластерных вычислительных систем.

Ключевые слова: вычислительная система кластерного типа, приложение промежуточного уровня, функ-
циональная архитектура, логико-вероятностная модель, логико-алгебраическая модель, режимы обработки за-
просов, результаты моделирования

Для цитирования: Петушков Г.В. Организация и исследование кластерных вычислительных систем с функцио-
нальной архитектурой, определяемой исполнимыми моделями. Автоматные исполнимые модели обработки ин-
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implementation of the ELBJUWEL  supercomputer 
with artificial intelligence (AI) capabilities.4 The efforts 
of the developers are focused on creating a  unique 
innovative platform which will combine expertise in 
the field of AI and high-performance computing. The 
works  [3–5] are devoted to describing the needs for 
high-performance computing when solving machine 
learning problems.

The next problem faced by supercomputing centers 
is the inefficient use of resources for high-performance 
computing when resolving certain computational tasks. 
Such tasks can block valuable computing resources and 
slow down calculations for other users. In order to address 
this issue, the National Research University Higher 
School of Economics has developed a  task monitoring 
system for the cHARISMa high-performance computing 
cluster which automatically generates conclusions about 
their performance [6]. This university has accumulated 
extensive experience in using the supercomputer 
complex based on the cHARISMa  cluster to resolve 
tasks for various categories of users. These tasks include: 
searching, analyzing, and forecasting data on social 
networks  [7]; researching machine learning models 
for predicting the risks of major cardiovascular events 
in patients with myocardial infarction and different 
genotypes [8]; and many others.

Additional information on existing software 
packages in cluster systems is provided in [9–11].

Russian cluster projects include the MVS-100K 
supercomputer installed at the Interdepartmental 
Supercomputer Center of the Russian Academy of 
Sciences and the Lomonosov supercomputer installed 
at the Research Computing Center of Lomonosov 
Moscow State University as part of the SKIF project5. 
The “Chervonenkis,” “Galushkin,” and “Lyapunov” 
supercomputers, created by Yandex, also have a cluster 
architecture6. They run on Nvidia  A100  graphics 
accelerators  (Nvidia  A100  GPUs with tensor cores) 
with an InfiniBand communication system based on 
Mellanox switches (Israel)7.

Many issues related to the computing resources 
required by ordinary users and organizations arise in 
connection with the organization and use of computing 
clusters. Therefore, the review of literature must be 

4  ParTec AG: A  More Efficient Supercomputer for the AI 
Revolution. Frankfurt, Bloomberg; 2024. 43 p.

5  Center for Collective Use of Ultra-High-Performance 
Computing Resources at Lomonosov Moscow State University. 
https://parallel.ru/cluster. Accessed June 02, 2025 (in Russ.).

6  Chernyavtseva V. Yandex has created three of Russia’s most 
powerful supercomputers. https://nplus1.ru/news/2021/11/15/
chervonenkis. Accessed June 02, 2025 (in Russ.).

7  Russia suddenly burst into the world’s top most powerful 
supercomputers. https://www.cnews.ru/news/top/2021-11-16_
rossijskie_superkompyutery. Accessed June 02, 2025 (in Russ.).

supplemented with an analysis of some characteristic 
foreign sources. Articles [12, 13] note the shortcomings 
of cluster computing systems. Some of these 
shortcomings contradict the advantages which can be 
explained by the specifics of enterprises and users. 
Clusters are difficult to manage without experience and 
given a  large cluster size, it will be difficult to detect 
a malfunction.

The problem with troubleshooting arises because 
the user is dealing with a  single entity, and when 
a malfunction is detected, it is unclear which component 
is causing the problem.

The following circumstance can also be attributed 
to the disadvantages of cluster computing systems [14]. 
Clusters are not suitable for commercial and business use 
by all consumers, as they require special programming 
skills, knowledge of systems and programming languages 
that are not widely used for commercial purposes. 
Personnel are required to have special technical skills 
for operation and administration.

A large number of the medium-cost and low-cost 
computing clusters considered are based on various 
types of switches, including Infiniband and Ethernet 
switches. In the example of the computing cluster and 
its infrastructure as shown in Fig. 1, traffic from different 
local networks can intersect if this does not interfere 
with the main function of the cluster nodes. Cluster 
nodes N1–N16 process user load; U1 and U2 are control 
nodes which monitor the status of the cluster’s hardware 
and software and take action to reconfigure it in response 
to any event occurring in the cluster; M1  and  M2  are 
shared backup storage devices. They store information 
accessible to all cluster nodes and used by them to access 
shared data, including data about a  failed node, which 
can be used by a  backup node. S1  and  S2  are servers 
accessible via public and client networks. The private 
network L2 level switch exchanges data between cluster 
nodes using hardware MAC8  addresses. Command 
messages used by nodes to check the cluster’s operability, 
reconfigure it, and synchronize it are transmitted over 
the private network.

The L3 level switch of the public network exchanges 
data using IP9 or hardware MAC  addresses. At the 
public network level, access to the cluster is virtualized 
as a single system. A local network built on the basis of 
an L2+ level switch with added features provides client 
access to the cluster. The presence of several network 
switches in the computing cluster infrastructure enables 
the use of three main types of networks: communication, 
transport, and service [15].

8  Media Access Control.
9  Internet Protocol Address is a  unique numerical device 

identifier.

https://parallel.ru/cluster
https://nplus1.ru/news/2021/11/15/chervonenkis
https://nplus1.ru/news/2021/11/15/chervonenkis
https://www.cnews.ru/news/top/2021-11-16_rossijskie_superkompyutery
https://www.cnews.ru/news/top/2021-11-16_rossijskie_superkompyutery
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K1 K2 K3 K4

Controlling 
hub U1

Controlling 
hub U2

Server  S1 Server S2 

Hub N1 Hub N2 Hub N15 Hub N16 

Local network switch 
of the L2+ level

Public network switch of the L3 level 

Private network switch of the L2 level 

...

Clients

M1 M2

General 
back-up store

Cluster 
hubs

Fig. 1. Option for organizing a computing cluster  
and its infrastructure

In order to solve the pressing tasks set out in this 
paper—organizing an effective functional architecture 
for clusters by creating new application-class and 
middleware-class software—it is important to focus 
on existing, well-developed software: message 
processing services—message-oriented middleware, 
services that provide big data analytics and connection 
to data storage—data warehousing and big data 
analytics data warehousing and big data analytics, 
and protocols and products that provide interprocess 
communications [15].

1. AUTOMATIC MODELS 
OF INTERMEDIATE-LEVEL CLUSTER 

APPLICATIONS

A computing system in operation  [1] is defined at 
an abstract level as a set of functional devices operating 
in time. When assessing the quality of operation, it is 
proposed that the content of the operations performed 

be abstracted and the operation of functional devices in 
the time reference system be considered. Therefore, it 
will be useful to construct formal models for analyzing 
the functioning of computing clusters. In addition, as 
follows from the “Computing and Cluster Systems” 
course  [15], “in practice, the peak characteristics of 
communication equipment specified by the manufacturer 
are not as important as the actual performance achieved 
at the user application level.” This statement implies that 
the choice of the system and functional architecture of 
a computing cluster should be determined mainly by the 
applications and modes of use of the cluster, including 
those implemented at the middleware level. Therefore, 
part of the application software and middleware can 
be conditionally considered as system software that 
determines the functionality of the entire computer 
cluster.

The main effect of interpreting the models 
proposed is the possibility that they can be used as 
formalized specifications when describing parallel 
processes in cluster computing systems and networks 
at the level of tasks, data, algorithms, and machine 
instructions, i.e., at the basic levels of abstraction—
from conceptual representation to implementation 
details. The selection of the following model examples 
based on program diagrams is based on compliance 
with a  high level of generality. The algorithms must 
contain all basic algorithmic constructs which enable 
the implementation of sequences, branches, and 
cycles. It must be possible to reinterpret types of 
parallelization—at the task level, at the data level, 
at the algorithm level, and at the machine-level 
command level, with the possibility of alternating 
sequential single-threaded parts of the program with 
multi-threaded parallel sections.

However, it is only possible to investigate the 
actual operation of applications on a  working cluster. 
The problem can be resolved at the preliminary stages 
with less effort and expense by using executable formal 
models, on the basis of which simulation models of the 
cluster’s operation should be constructed. These models 
may include characteristic or simplified fragments of 
real applications.

At this stage of model construction, the semantics of 
data and operations are not considered, i.e., preserving 
the generality of the models, the meanings of variables 
and operation symbols are not interpreted. It is assumed 
that the methods for creating and interpreting models 
can be further used in the creation of working interpreted 
applications when the cluster is put into operation. In 
this case, formal models can play the role of formalized 
specifications.

Convenient models for subsequent use for these 
purposes are: graph-scheme algorithm language (GSA), 
finite automata, and logic-algebraic models based on 
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first-order predicate logic. This subsection proposes 
using Moore’s finite partial automaton model10  [16]. 
This model is also well known from works in the field 
of microprogramming [17, 18]. Figures 2 and 3 show 
examples of GSA selected to illustrate the creation 
of application models:  GSA1  and  GSA2. The main 
criteria for selection are the usual requirements for 
GSA  correctness and the presence of sequences 
of operators and branches. GSA1  (Fig.  2) contains 
operator vertices (hereinafter simply operators) 
A0, A1, A2, …, A16, A27, AK. In addition, GSA1 contains 
parallel fragments represented by structured operators 
C1,  C2,  …,  C8, each of which corresponds to an 
“internal” copy of GSA2 (Fig. 3); each copy, or clone, 
contains local operators A17, A18, A19, …, A25, A26.

Both GSAs contain conditional vertices (hereinafter 
referred to as logical conditions) x1, x2, …, x5  (GSA1) 
and x6,  x7,  …,  x10  (GSA2). Condition symbols are 
treated as names of unary predicates. The values of 
logical conditions—0 (true) or 1 (false)—are calculated 
after the execution of operators, including operators for 
entering input conditions (input signals, input symbols, 
or partial automata).

A0

0 1

0 1

0 10 1

1 0

A1

A2

A5

A4A3

A8A7

A11 A12A10A9

C1 C2 C3 C4 C5 C6 C7 C8

A15A14

A6

A13

A16

A27

AK

x1

x2

x5

x4x3

Fig. 2. Flowchart of the GSA1 algorithm  
for cluster application operation

10   Gurenko V.V. Introduction to Automata Theory. Moscow: 
Bauman Moscow State Technical University; 2013. https://rusist.
info/book/10028635?ysclid=mf5p2z07v616437010. Accessed 
June 02, 2025 (in Russ.).

The construction and study of automata models will 
be carried out for the case of SPMD (Single Program, 
Multiple Data) methods. In the following subsections, 
other executable models will be constructed based 
on a  logical-algebraic approach: MPMD  (Multiple 
Programs, Multiple Data) and MPSD  (Multiple 
Programs, Single Data)  [1]. The latter method is most 
suitable for pipeline data processing. All these methods 
are used to achieve parallelism. There are a  number 
of implementation options for these methods used in 
computing clusters.

0

01

01

011

0 1

A17

A18 A21

A22

A23A20

A24

A25 A26

A27

A19

x6

x7

x8 x9

x10

Fig. 3. Block diagram of the GSA2 algorithm for a single 
copy of a parallel application section for a cluster

Canonical equation systems (CES) [18, 19], which 
describe transitions from one state to another, were 
chosen as the initial language for specifying partial 
automata. Permissible parallel transitions correspond, 
for example, to the representation of parallel sections 
in modified logical diagrams of algorithms, known 
from works on microprogramming  [20]. In these 
diagrams, parallel sections are considered to be private 
logical diagrams of algorithms and enable for simple 
reinterpretation into the graphical form of GSA. Parallel 
GSA languages were also used in works [21, 22]. The 
structuring of hierarchical automata states was proposed 
earlier in a number of works [23–25].

The following concepts are used in the proposed 
CES  models. Operators are assigned a  one-to-one 

https://rusist.info/book/10028635?ysclid=mf5p2z07v616437010
https://rusist.info/book/10028635?ysclid=mf5p2z07v616437010
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correspondence with so-called private events, represented 
by unary predicates of the form Ai(t), defined on the set 
of discrete time values t. Partial input variables, or input 
conditions, are represented by unary predicates of the 
form xj(t), also defined on the set of discrete time values t. 
Unary predicates of the form zk(t), are also introduced to 
take true values only after the corresponding events of 
the form Ak(t) have already occurred. This corresponds 
to the fact that the operator Ak has completed its work. 
Thus, when zk(t) = 0 (false), the event Ak(t) is preserved, 
and when zk(t) = 1 (true), it is not preserved. The first 
condition for the event Ak(t) enables its execution to 
be extended, and when the second, opposite condition 
is fulfilled, the event Ak(t) is completed. The condition 
for the onset of an event corresponds to the transition 
from the preceding event. The remaining features of the 
CES construction can be conveniently explained using 
examples of the transition from GSA to CES.

Figure 4  shows the state transition graph of the 
sequential application’s automaton model, constructed 
by transitioning from GSA1 and GSA2. Section С0  is 
highlighted, intended for subsequent cloning 
when transitioning to the application simulation 
corresponding to the SPMD  cluster operating mode. 
This graph, as will be required later, can also be viewed 
as a  sequential composition of two partial automata: 
the first automaton corresponds to states 1–16, and the 
second to states 17–27.

Figures 2 and 3 use standard GSA notation for logical 
conditions: x1, x2, …, x10, which are also considered in 
the CES entry-level language for specifying partial finite 
automata as names of unary predicates. In  Fig.  4  and 
further in Fig. 5, other names are used for the three input 
variables. These are also convenient for further testing of 
applications using partial automaton analysis: х  (value 
х = true after the end of any operator without calculation 
or without entering a  condition value); nx  (value 
nx = true if, after the end of the operator, a false condition 
value is calculated or entered, otherwise nx  =  false); 
and yx (value yx = true if, after the end of the operator, 
a true condition value is calculated or entered, otherwise 
yx = false). The locations for calculating and checking 
these variables are uniquely determined by the location 
of the operator. If necessary, this can be used for the usual 
numbering of logical conditions x1, x2, …, x10 and used 
further in the compilation of CES and logic-algebraic 
expressions. In Fig. 4, the first state is designated as the 
initial, starting  (Start) state, and the 28th as the final, 
ending (End).

A system of canonical equations can be considered 
as a  system of production rules designed to represent 
knowledge in automata models. Productions can be used 
to represent knowledge that can take the form of rules 
such as “premise →  conclusion, condition →  action.” 
The left side of the rule is called the antecedent, and 

the right side is called the consequent. The antecedent 
is the premise of the rule  (the conditional part) and 
consists of elementary statements using the logical 
symbols AND, OR, NOT. The consequent (conclusion) 
includes one or more statements which express either 
a  certain fact or an indication of a  specific action to 
be performed  [26–28]. A  set of productions forms 
a  production system for which special procedures are 
specified for selecting productions and executing one or 
another production from among those selected.

A distinctive feature of CES, considered as 
a  type of production system, is the placement of 
the conditional part  (antecedent) on the right, and 
the action or conclusion  (consequent) on the left. 
Therefore, the direction of the conclusion is from right 
to left. This is largely due to the theory and practice 
of microprogrammed automata synthesis and the 
representation, along with canonical equations, of 
excitation functions of elementary automata (D-triggers, 
or delay elements) in the unitary encoding of the states of 
a finite partial automaton [17, 18, 29]. In the future, the 
concept of “product” will also be used in the construction 
of logical-algebraic models of cluster-type systems.

2. AUTOMATIC CES MODEL  
OF THE SEQUENTIAL PART  

OF THE APPLICATION

Figure 4  shows the state transition graph of the 
sequential application’s automaton model. Some of 
the states a1, a2, …, a16, a28 were obtained by marking 
the states of the Moore automaton on  GSA1, shown 
in Fig. 2. The rest of the states a17, a18, …, a27 belong to 
the subgraph C0, which was constructed by marking the 
states of the Moore automaton on GSA2.

At this stage, the recurrent predicate equations of 
the SPSeq CES for GSA1 are compiled without taking 
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into account the structured operators C1, C2, …, C8 and, 
accordingly, without the structured states 
a17,  a18,  …,  a27  of the automaton, i.e., the model 
currently covers only operators A0, A1, …, A16:

A0(t + 1) = A0(t) & ¬x0(t) ∨ xbegin(t);
A1(t + 1) = A0(t) & x0(t) ∨ A1(t) & ¬z1(t);
A2(t + 1) = A1(t) & z1(t) ∨ A2(t) & ¬z2(t);
A3(t + 1) = A2(t) & z2(t) & ¬x1(t) ∨ A3(t) & ¬z3(t);
A4(t + 1) = A2(t) & z2(t) & x1(t) ∨ A4(t) & ¬z4(t);
A5(t + 1) = A3(t) & z3(t) ∨ A4(t) & z4(t) ∨ A5(t) & ¬z5(t);
A6(t + 1) = A5(t) & z4(t) ∨ A6(t) & ¬z6(t);
A7(t + 1) = A6(t) & z6(t) & ¬x2(t) ∨ A7(t) & ¬z7(t);
A8(t + 1) = A6(t) & z6(t) & x2(t) ∨ A8(t) & ¬z8(t);
A9(t + 1) = A7(t) & z7(t) & ¬x3(t) ∨ A9(t) & ¬z9(t);
A10(t + 1) = A7(t) & z7(t) & x3(t) ∨ A10(t) & ¬z10(t);
A11(t + 1) = A8(t) & z8(t) & ¬x4(t) ∨ A11(t) & ¬z11(t);
A12(t + 1) = A8(t) & z8(t) & x4(t) ∨ A12(t) & ¬z12(t);
A13(t + 1) = A9(t) & z9(t) ∨ A10(t) & z10(t) ∨ A11(t) &

& z11(t)∨ A12(t) & z12(t) ∨ A13(t) & ¬z13(t);
A14(t + 1) = A13(t) & z13(t) & x5(t) ∨ A14(t) & ¬z14(t);
A15(t + 1) = A13(t) & z13(t) & ¬x5(t) ∨ A15(t) & ¬z15(t);
A16(t + 1) = A14(t) & z14(t) ∨ A15(t) & z15(t) ∨ A16(t) &

& ¬z16(t),

where xbegin(t) is the input variable (“signal”).
Copies (or clones) of the application module 

compiled according to the SPSeq CES for GSA1 are loaded 
onto all computing nodes of the cluster and executed 
in parallel mode, processing the same data or entering 
data of the same type. The automatic model assumes 
different execution times for events corresponding to 
application operators. In the further description of the 
CES equations, for the sake of brevity the terms “event” 
and “state” will be considered synonymous.

Below are descriptions of some key equations from the 
given CES. The initial equation has the following form:

A0(t + 1) = A0(t) & ¬x0(t) ∨ xbegin(t).

According to this equation, when the true value of the 
input variable xbegin(t) = true appears in the automaton, 
the initial event A0(t + 1) = true is set in the next cycle, 
which corresponds to its inception. This event is retained 
as long as the condition for its retention A0(t) & ¬x0(t) 
at  A0(t  +  1)  =  true and x0(t)  =  false. Further, when 
the input signal x0(t)  =  true is received, the true 
condition  A0(t)  &  x0(t) for the initiation of a  new 
event A1(t + 1) is formed in the automaton:

A1(t + 1) = A0(t) & x0(t) ∨ A1(t) & ¬z1(t).

This event persists as long as the condition 
A1(t)  &  ¬z1(t) for its persistence is true. It will end 
with  (A1(t + 1) =  false, i.e., this statement will become 
false) when operator  A1  generates the sign  z1(t)  =  true 
indicating the end of its work. As can be seen from the 
recursive predicate equations of this SPSeq CES, the event 
of establishing the truth of the antecedent (right statement) 
occurs at a  fixed moment in time  t, and the event of 
establishing the truth of the consequent  (left statement) 
occurs at the next moment in time (t +  1).

3. AUTOMATIC CES MODEL OF ONE OF THE 
PARALLEL SECTIONS (CLONES) OF THE 

APPLICATION

Figure 4  shows the state transition graph of the 
sequential application’s automaton model; section С0 is 
highlighted. This is intended for subsequent cloning 
when transitioning to SPMD mode.

Recursive predicate equations of CES  MDClon 
for GSA2:

A17(t + 1) = A16(t) & z16(t) ∨ A17(t) & ¬z17(t);
A18(t + 1) = A17(t) & z17(t) & x6(t) ∨ A20(t) & z20(t) ∨ 

∨ A23(t) & z23(t) ∨ A18(t) & ¬z18(t);
A19(t + 1) = A18(t) & z18(t) & x7(t) ∨ A19(t) & ¬z19(t);
A20(t + 1) = A19(t) & z19(t) & x8(t) ∨ A20(t) & ¬z20(t);
A21(t + 1) = A17(t) & z17(t) & ¬x6(t) ∨ A21(t) & ¬z21(t); 
A22(t + 1) = A18(t) & z18(t) & ¬x7(t) ∨ A22(t) & ¬z22(t);
A23(t + 1) = A22(t) & z22(t) & ¬x9(t) ∨ A23(t) & ¬z23(t);
A24(t + 1) = A19(t) & z19(t) & ¬x8(t) ∨ A22(t) & z22(t) &

& x9(t) ∨ A21(t) & ¬z21(t) ∨ A24(t) & ¬z24(t);
A25(t + 1) = A24(t) & z24(t) & ¬x10(t) ∨ A25(t) & ¬z25(t);
A26(t + 1) = A24(t) & z24(t) & x10(t) ∨ A26(t) & ¬z26(t);
A27(t + 1) = A25(t) & z25(t) ∨ A26(t) & z26(t) ∨ A27(t) &

& ¬z27(t).

The shared SPSeq CES model and a single copy of the 
MDClon, CES model, taken together, define a  single CES 
model designated SPSeq * MDClon, where the symbol “*” 
denotes the operation of combining two  CESs into one 
common CES. The state transition graph for this model is 
shown in Fig. 4. Another interpretation, as mentioned earlier, 
allows the state transition graph SPSeq  *  MDClon to be 
considered as a sequential composition of partial automata.

4. SEQUENTIALLY-PARALLEL COMPOSITION  
OF AUTOMATONS DETERMINING 

THE OPERATION OF CLUSTER COMPUTERS

The flowchart of the GSA1  algorithm 
in  Fig.  2  contains parallel sections, abbreviated as 
structured operators  C1,  C2,  …,  C8. In a  complete 
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single-level representation, each of these operators 
is replaced by  GSA2  in  Fig.  3  while, in the program 
implementation, it is executed independently of the 
others on its “own” cluster computer. The complete 
network CES model of a sequential-parallel network of 
automata is represented by the following expression: 

SPSeq * (ParReplicate(1..8)MDClon),

wherein Replicate(1..8) is the inclusion of the CES into 
the general system 8 times in a row. Par is the indication 
that these replicas must be executed in parallel.

The state transition graph for this network of 
partial automata with structured states  C1–C8  is 
shown in  Fig.  5. When constructing a  network 
CES model, equations need to be compiled to include 
structured events. Each structured event represents 
a  nested partial automaton. The use of hierarchical 
finite automata is a fundamentally important method 
of software design, and corresponds to the concept of 
a “subroutine”.

The advantage of the method of formalizing 
algorithms using CESs is the compact logical description 
of transition functions [16, 17]. Structured events with 
the same names are introduced in a manner analogous 
to structured states  C1–C8. Each structured event is 
“embedded” in already compiled MDClon.

The initiation and continuation of events  С1–С8  
(initiation and parallel operation of independent 
software modules) are described by the following 
CES SC:

С1(t + 1) = A16(t) & z16(t) ∨ C1(t) & ¬w1(t);
С2(t + 1) = A16(t) & z16(t) ∨ C2(t) & ¬w2(t);
С3(t + 1) = A16(t) & z16(t) ∨ C3(t) & ¬w3(t);
С4(t + 1) = A16(t) & z16(t) ∨ C4(t) & ¬w4(t);
С5(t + 1) = A16(t) & z16(t) ∨ C5(t) & ¬w5(t);
С6(t + 1) = A16(t) & z16(t) ∨ C6(t) & ¬w6(t);
С7(t + 1) = A16(t) & z16(t) ∨ C7(t) & ¬w7(t);
С8(t + 1) = A16(t) & z16(t) ∨ C8(t) & ¬w8(t).

Each of the events С1–С8  originates when the 
compound statement A16(t)  &  z16(t) is true, i.e., it is 
a  consequence of the successful completion of the 
event  A16. Each of these events  Сi persists until the 
termination condition wi(t), i = 1, 2, …, 8 is satisfied. 
Events  С1–С8  start simultaneously, but do not 
necessarily end simultaneously, since the termination 
conditions may not depend on each other. However, 
the transition to event  A28  should only occur after 
all events  С1–С8  have been completed. Therefore, 
the CES  model should be followed by events which 
determine barrier synchronization and consist of 

waiting for the completion of the events С1–С8 in each 
of the branches, as well as the subsequent initiation and 
retention of indicator events D1–D8 for the termination 
of all branches.
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in SPMD mode

The system of canonical SD equations describing the 
origin and conservation of these events has the following 
form:

D1(t + 1) = C1(t) & w1(t) ∨ D1(t) & ¬D9(t);
D2(t + 1) = C2(t) & w2(t) ∨ D2(t) & ¬D9(t);
D3(t + 1) = C3(t) & w3(t) ∨ D3(t) & ¬D9(t);
D4(t + 1) = C4(t) & w4(t) ∨ D4(t) & ¬D9(t);
D5(t + 1) = C5(t) & w5(t) ∨ D5(t) & ¬D9(t);
D6(t + 1) = C6(t) & w6(t) ∨ D6(t) & ¬D9(t);
D7(t + 1) = C7(t) & w7(t) ∨ D7(t) & ¬D9(t);
D8(t + 1) = C8(t) & w8(t) ∨ D8(t) & ¬D9(t).

The following single equation, additionally 
designated as the CES  D9, system, describes the 
expectation of the occurrence of all indicator 
events D1–D8 for the completion of parallel work on 
all branches:

D9(t + 1) = D1(t) & D2(t) & D3(t) & D4(t) & D5(t) & 
& D6(t) & D7(t) & D8(t) ∨ D9(t) & ¬v9(t).

The equations describing the transition to the final 
events  A28,  A29  and further to event  A1  of the control 
module are as follows: 

A28(t + 1) = D9(t) & v9(t) ∨ A28(t) & ¬z28(t);
A29(t + 1) = A28(t) & z28(t) ∨ A29(t) & ¬z29(t);

A1(t + 1) = A29(t) & z29(t) ∨ A1(t) & ¬z1(t).
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In order to use the equations for the events  A28 
and  A29  in a  combined expression for a  network of 
partial automata, they are designated as separate 
CESs A28 and A29, respectively.

In order to implement a detailed network CES model 
for executing an application in a  cluster in sequential-
parallel processing (SPMD) mode, all equations must be 
combined in the following sequence:

SPMD: SPSeq * SС * SD * D9 * A28 * A29,

moreover, the initiation of the previously described 
parallel replicas ParReplicate(1..8)MDClon is performed 
upon the occurrence of the events С1–С8, determined by 
the CES SС subsystem. The completion of these replicas 
occurs upon the occurrence of the events  D1–D8, 
determined by the CES SD subsystem. When the replicas 
are running, the range of variation of the variable  t, 
which counts system time, is expanded.

The resulting general CES model of the network of 
application execution machines in a  cluster in SPMD 
sequential-parallel processing mode belongs to the 
class of executable models. It is easily programmable 
in algorithmic languages containing message passing 
operators, as well as in assembly language for 
microcontrollers and microprogramming language. 
A  simulation model is built on its basis, enabling the 
functioning of the cluster system to be studied at the 
micro level.

The networks of partial finite automata considered 
in this work consist of automata which simulate 
application of software modules of a  computing 
cluster connected by a  message passing interface 
at the inputs and outputs. Each module can receive 
a  message at the input which transmits control with 
data, process it, and transmit a  control message with 
data to the next module. Other types of inter-module 
interaction in the cluster are not considered. Therefore, 
issues of automata composition and other methods of 
constructing complex automata from simple ones are 
not taken into account here [30].

Automatic programming is currently considered 
one of the technologies to significantly reduce the time 
required to write programs and simplify their testing [31]. 
Systems of canonical equations also enable the creation 
of application, intermediate, and system-level programs 
based on them.

As is well known, mutual blocking, ambiguity, and 
deadlock and other configurations lead to violations 
of GSA  correctness. Therefore, the work proposes to 
resolve the problem of checking the graph scheme 
for correctness on an abstract model of algorithm 
interactions—on Petri nets  [32,  33]. Methods for 
transitioning from a  parallel GSA to a  Petri net are 
given, for example, in [21, 22].

5. FORMALIZATION OF LOGICAL-PROBABILISTIC 
MODELS OF PARTIAL AUTOMATON NETWORKS 

CREATED BASED ON THE CES LANGUAGE

The concept of a logical-probabilistic model such as 
“temporal probabilistic CES” (TPCES) will enable the 
visual formalization and implementation of automatic 
models and working programs characteristic of cluster 
and other applications, for example, with pipeline 
parallelism. This will also significantly reduce the 
number of “incremental” additions when listing discrete 
time moments:

TPCES = (CES0, S, X, TX, WTX, TZ, WTZ),

wherein network CES0 is the initial language adopted 
for describing the CES finite state machine network, 
limited by the description of partial machines and 
characterized by cluster and pipeline computing 
systems, mainly by the sequential execution of 
events in time. Furthermore, only simple parallelism 
of events is enabled without interaction between 
copies of CES0  branches, ending with barrier 
synchronization of branches. S  is a  finite set of 
events  {S0(t),  S1(t),  …,  Sn(t)} specified by unary 
predicates. X is a finite set of input events specified by 
unary predicates {X0(t), X1(t), …, Xm(t)}. TX is a finite 
set of random time intervals {tx0, tx1, …, txm} from the 
current moments to the moments of occurrence of input 
events X. WTX is a finite set of probability distribution 
functions of the form P{txk = i} = pki, i = 0, 1, …, ik, 
of random time intervals from the set  TX. TZ is 
a finite set of random time intervals {tz0,  tz1, …,  tzn} 
of preservation. Thus, the occurrence of events from 
the set S; WTZ is a finite set of probability distribution 
functions of the form P{tzr = j} = prj, j = 0, 1, …, jr, of 
random time intervals from the set TZ.

Random variables (pseudorandom variables in 
software implementations)  tx  and  tz only take non-
negative integer values. Only finite probability 
distributions of integer random variables are considered. 
It is also possible to use integer constants as values for 
tXk, k = 0, 1, …, m and tzr, r = 0, 1, …, n.

The structure of an application containing 
sequential and independent parallel sections forming 
a network of automata may enable for a deeper level 
of nesting, which is characteristic of most cluster 
computing systems.

The initial non-interpretability of the TPCES model 
enables it to be applied at the level of programs, program 
modules, operators, down to the level of machine 
commands and microprograms.

The general approach to developing a statistically 
executable model of a cluster application is as follows. 
The method of organizing a  sequence of events is 
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used, in which periods of event generation alternate 
with periods of event preservation. Let us assume, for 
example, that for a sequential section of an application 
formalized, for example, by the CES SPSeq system, the 
actions specified by the following three equations are 
performed:

A2(t + 1) = A1(t) & z1(t) ∨ A2(t) & ¬z2(t);
A3(t + 1) = A2(t) & z2(t) & ¬x1(t) ∨ A3(t) & ¬z3(t);
A4(t + 1) = A2(t) & z2(t) & x1(t) ∨ A4(t) & ¬z4(t).

As determined when constructing any equation, the 
onset of the next event, for example, event A2(t + 1), 
occurs at time  (t + 1). For this event to occur at the 
specified moment in time then at the previous moment 
in time  t the statements  A1(t)  and  z1(t) need to be 
true—i.e., event A1(t) would have occurred for the last 
time at this moment, which would be indicated by the 
appearance of the true value of the statement  z1(t)— 
the end of the action of the event  A1(t). From the 
moment of time  (t  +  1), event  A2(t  +  1) begins and 
continues until statement z2(t) is false. The appearance 
of the true value of the statement z2(t) will lead the 
compound statement  A2(t)  &  ¬z2(t) being become 
false, and the condition for the continuation of 
event A2(t) not to be fulfilled. At the next moment in 
time, the event A2(t) will occur for the last time, and 
if the statement  A2(t)  &  z2(t)  &  ¬x1(t) is true, then 
the event A2(t) will begin to occur (will originate) at 
the next moment in time (t + 1”. The preservation of 
the event  A2(t) can be “extended” by moving to the 
time mark t = t + tz2 of its end, where the value of the 
time interval tz2 is determined using a pseudo-random 
number generator with a given distribution law. Acting 
in a similar way, the inception of the event A3(t + 1) 
can be delayed by delaying the action of input 
variable  x1(t) by the amount of the time interval  tx1. 
This is achieved by moving to the time mark of the 
event t = t + tx1 corresponding to the activation of the 
variable  x1(t). The value of the variable  tx1  is set by 
a  pseudo-random number generator. The compound 
statement A2(t) & z2(t) & ¬x1(t) will become true, and 
then event  A3(t  +  1) will occur at the next moment 
in time (t + 1). The preservation of the event A3 and 
the initiation and preservation of the event A4 occur in 
a  similar manner. Thus, by transitioning from event 
to event, the logical-probabilistic model of the cluster 
application is implemented. 

Figure 5  shows a  network automaton model of 
application execution in a cluster in SPMD sequential-
parallel mode. With the accepted mode of operation 
of independent parallel programs in the parallel 
section of the SPMD mode, independent MDClon-type 
CES  models can be used to represent structured 
events C1–C8.

6. RESULTS OF STATISTICAL EXPERIMENTS 
WITH CLUSTER SYSTEM MODELS 

IN PARALLEL-SERIAL SPMD

Simulation statistical models of application 
execution were constructed on the basis of automatic 
probabilistic CES models. The table shows the 
numerical values of the acceleration coefficient of the 
application executed in SPMD  mode on a  computing 
cluster, obtained from the constructed simulation model. 
Following  [1], acceleration is taken as the ratio of the 
application execution time on one node (tseq + NtN) to 
the sum  (tseq  +  tN) of the execution time of the same 
application in parallel mode on all N  nodes of the 
cluster  tN, and the time  tseq of a  single execution of 
a sequential section of the application:

k = (tseq + NtN) / (tseq + tN).

It was assumed that parallel sections are executed 
independently of each other. Since the execution times 
of sequential and parallelized sections are unknown in 
advance, their statistical characteristics are determined 
by performing a  statistical experiment. Therefore, 
in the given formula,  tseq  and  tN are estimates of the 
mathematical expectations of these time intervals. 
In the simulation, it was assumed that the execution 
time of each operator was uniformly distributed 
from  1  to  9  ms. Transitions between conditions are 
equally probable (0.5 each).

The results are summarized in the table. The entries 
in the column headers indicate that the acceleration 
coefficient  k is calculated at the specified time 
value T = tseq, expressed in units of model time (here in 
milliseconds, ms).

Table. Estimates of the calculation acceleration 
coefficient k determined using statistical models

N T = 0 T = 10 T = 20 T = 30 T = 40 T = 50

1 1 1 1 1 1 1

2 2 1.98 1.96 1.94 1.92 1.9

4 4 3.88 3.77 3.67 3.57 3.48

8 8 7.46 7.0 6.6 6.25 5.93

16 16 13.8 12.25 11.0 10.0 9.25

32 32 24.2 19.6 16.5 14.3 12.6

Examples of dependencies of the acceleration 
coefficient k on the number of nodes in the cluster are 
illustrated in Fig. 6.
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Fig. 6. Results of statistical experiments with cluster 
models running a sequential-parallel application 

LSeq * ParReplicate(i = 1..8)Ci

At T  = 0, there is no sequential section, so the 
acceleration factor values are equal to the number of 
nodes involved. As values of  T  increase, the effect of 
parallelization becomes less pronounced, since the 
execution time of the sequential section has a  greater 
impact on the result of the acceleration factor calculation.

The complexity of the problem is caused by the 
branching nature of the selected algorithm, as well as the 
presence of cycles. The execution time of the branched 
sections of the program and the number of cycles passed 
depend on the type of conditions entered and, in practice, 
can be determined using a  detailed simulation model. 
Both automaton CES models and models based on logical 
algebraic expressions are executable models, since in order 
to study the properties and dynamic behavior of the modeled 
object, the model must be “executed,” i.e., run on a computer 
and the processes of event change must be studied.

The acceleration coefficient k was calculated based 
on the results of statistical modeling. For example, 
Fig.  7  shows a  histogram of the distribution of the 
execution time tex = tseq + NtN of the application without 
parallelization at N = 1.
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Fig. 7. Histogram of the execution time distribution 
tex = tseq + 32t32 of the application at N = 1 without 

parallelization; the abscissa axis shows the frequency class 
boundaries for the histogram, the histogram step is 40 ms; 

the ordinate axis shows the number of hits in each frequency 
class with a sample size of 10000

Here, Mean1  =  tseq  +  32t32  =  1008.622  ms is 
the estimate of the mathematical expectation of the 
application execution time without parallelization.

Figure 8 shows a histogram of the application execution 
time distribution for N = 32 with a sequential section and 
parallelization. Here, Mean2  =  tseq  +  t32  =  80.266  ms 
is the estimate of the mathematical expectation of the 
application execution time with a  sequential section 
and parallelization of the rest. The execution time of the 
sequential section was determined in the same experiment 
and is equal to tseq = 49.991 ms.

Then k  =  (tseq  +  32t32)/(tseq  +  t32)  =  12.58. The 
same result is obtained by calculating the acceleration 
coefficient using the known formula for Amdahl’s 
second law [1]:

k = N / [βN + (1 – β)] = 12.61

at N = 32 with a proportion of sequential calculations

β = tseq / (tseq + 32t32) = 49.991 / 1008.622 = 0.04957.

A small error is caused by the use of the static 
modeling method when evaluating time parameters in 
the computing cluster model.
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Fig. 8. Histogram of the execution time distribution 
tex = tseq + t32 of the application at N = 32,  

with a sequential section and parallelization of the rest;  
the abscissa axis shows the frequency class boundaries 
for the histogram, the histogram step is 5 ms; the y-axis 

shows the number of hits in each frequency class 
for a sample size of 10000

7. TRANSITION FROM AUTOMATIC MODELS 
TO ASYNCHRONOUS LOGICAL‑ALGEBRAIC 

MODELS OF CLUSTER COMPUTING SYSTEMS 
AT THE MIDDLEWARE LEVEL

Logical-algebraic models are based on logical 
calculi and algebraic systems. Logical calculi include 
propositional calculus and predicate calculus.

The logical-algebraic operational expression (LAOE) 
apparatus, based on the integration of a  number of 
models, is described from the perspective of various 
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applications. It is substantiated in works  [34,  35]. 
However, in the final stages of testing the models by 
means of studying their dynamics, the direct use of Petri 
nets is recommended, in this way replacing or removing 
“innovations” related to the additional use of first-order 
predicate logic. In order to maintain continuity in the 
names of the cluster application modules, the names of 
the operator vertices in GSA1 (Fig. 2) and GSA2 (Fig. 3) 
were chosen for the names of the positions. Double 
indices were chosen for the indexing of the transitions 
of the Petri net. 

Figure 9  shows examples which illustrate transitions 
from GSA to the CES model of a partial automaton and 
further to the initial logical algebraic expressions for 
a Petri net. Canonical equations have been compiled for 
the fragments in  Figs.  9a  and  9b, and logical algebraic 
expressions have been compiled for the fragment in Fig. 9c.

The system of canonical equations for the examples 
in Figs. 9a and 9b is as follows:

A3(t + 1) = A2(t) & z2(t) ∨ A3(t) & ¬z3(t);
A4(t + 1) = A3(t) & z3(t) & ¬x1(t) ∨ A4(t) & ¬z4(t);

A5(t + 1) = A3(t) & z3(t) & x1(t) ∨ A4(t) & ¬z4(t).

The CES model is synchronous, and during 
simulation, the current time of event execution must 
be counted. This slows down the simulation program. 
According to the previously introduced designations for 
input variables in partial automata in Fig. 4 and Fig. 9b, 
x = true, nx = ¬x1 and yx = x1.

The asynchronous LAOE system shown in Fig. 9c is 
represented as follows:

T2, 3: [M(A2)&¬M(A3)]({M(A2) ¬ false, M(A3) ¬ true} ∨ 
∨ Ret);

T3, 4: [M(A3) & ¬M(A4) & ¬X(A3)]({X(A3) ¬ undef, 
M(A3) ¬ false, M(A4) ¬ true} ∨ Ret);

T3, 5: [M(A3) & ¬M(A5) & X(A3)]({X(A3) ¬ undef, 
M(A3) ¬ false, M(A5) ¬ true} ∨ Ret),

wherein undef is an undefined value of a  logical 
condition.

The LAOE expressions given in this case are 
interpreted as rules for triggering transitions in a Petri net. 
Here, M is a unary predicate, or a function for marking 
positions, with the same name as the operators of the 
original GSA; M(Ai)  is a statement, the truth of which 
corresponds to the presence of one label in position Ai, 
while falsity corresponds to the absence of a label. X is 
a  unary predicate which defines the conditions in the 
original  GSA. X(Ai)  is a  statement which takes true, 
false, or undefined values, determined by the result of 
executing the operator Ai. The Ret operator enhances the 
procedural component of the LAOE and transitions to 
its repeated execution when the condition enclosed in 
square brackets is false.

A logical-algebraic operational model can obviously 
be constructed using a state transition graph  (Fig. 9b), 
which served as the basis for constructing 
a  Petri  net  (Fig.  9c). For this purpose, compliance is 
required with the rule of forming conditions by operators, 
including condition input operators.

The rules for triggering transitions can be further 
modified or supplemented in accordance with the 
requirements of the subject area. Additional events—
message transmission, message reception, transmission 
acknowledgment, event duration determination, 
represented by binary or ternary predicate modification 
operations—may not correspond to the generally 
accepted concepts of Petri nets. Therefore, transition 

(a) (b) (c)

Fig. 9. Fragments of the GSA (a), the transition graph of a partial automaton (b), and a Petri net (c)
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rules can take the form of more general LAOEs, for which 
other apparatus is used: apparatus of algorithmic algebra 
systems  [36,  37]; abstract machine networks  [38]; 
relational calculus and algebras [39].

CONCLUSIONS

1.	 The relevance of the tasks addressed in this article 
arises from the limitations of simple homogeneous 
cluster systems which complicate the creation of 
systems providing a  high level of structural and 
functional dynamics. New approaches to designing 
the system and functional architecture of computing 
clusters can be based on organizing the effective 
use and management of cluster operations, by 
means of enhanced problem orientation by creating 
middleware applications and software.

2.	 The method proposed and used in this work is based 
on the concept of architecture design defined by 
executable models. This is a type of object-oriented 
design.

3.	 A  distinctive feature of the methods proposed in 
this work is the use of automatic, network automata. 
In the future, logical-algebraic approaches may 
be implemented, in order to define the system and 
functional architecture, applied at virtually all levels 
of subject orientation of cluster computing systems. 
These will ensure the implementation of the 
architectural concept formed when creating a cluster 
system model at various levels of abstraction—from 
conceptual representation to implementation details.

4.	 The work shows that the main effect of interpreting 
the proposed automata models and methods is the 
possibility of their use as formalized specifications 
when describing parallel processes in cluster 
computing systems at the level of tasks, data, 
algorithms, and machine instructions.

5.	 The results of statistical experiments show the 
correctness of constructing probabilistic-automata 
CES models and logical-probabilistic models, as 
well as the possibility of using them as formalized 
specifications.
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