
7

Russian Technological Journal. 2025;13(6):7–24

© G.V. Petushkov, 2025

ISSN 2500-316X (Online)

UDC 004.9:681.3
https://doi.org/10.32362/2500-316X-2025-13-6-7-24
EDN WGZAHH

Information systems. Computer sciences. Issues of information security

Информационные системы. Информатика. Проблемы информационной безопасности

RESEARCH ARTICLE

Organization and study of cluster computing systems
with functional architecture determined

by executable models. Automata executable models
of information processing

Grigory V. Petushkov @

MIREA – Russian Technological University, Moscow, 119454 Russia
@ Corresponding author, e-mail: petushkov@mirea.ru

• Submitted: 04.08.2025 • Revised: 12.09.2025 • Accepted: 06.10.2025

Abstract
Objectives. An urgent task is to improve the functional architecture of cluster computing systems by introducing
methodologies for creating software at the applied and intermediate levels based on formalized specifications. One
such methodology is based on the use of automatic specifications for computer systems software. The complexity
of resolving the problem is caused by the branching of the algorithms built, as well as the presence of cyclic sections.
The execution time of the branched sections of the program and the number of cycles run depends on the type
of conditions entered. In practice it can be determined using a detailed simulation model and analysis of the control
program created on its basis. The aim of the work is to find approaches to the definition of functional architecture
which can be applied practically at the main levels of the subject orientation of cluster computing systems.
Methods. The methods proposed and used are based on the concept of organization and research of cluster-type
computing systems with a functional architecture as defined by executable automatic models.
Results. The paper proposes methods of constructing automatic and logical-probabilistic models of cluster
computing systems and creating software tools based on them. The concept of the logical-probabilistic model
“temporal probabilistic system of canonical equations (CES)” is introduced. This enables a visual formalization
to be obtained, as well as implementation of automatic models and work programs typical for cluster and other
applications. It also significantly reduced the number of “incremental” additions when enumerating discrete time
moments. The main feature of the new logical-probabilistic model is the preservation of the original CES in its basis.
Conclusions. The work concludes that the choice of the system and functional architecture of a computing cluster
should be determined not so much by the peak characteristics of the communication equipment specified by the
manufacturer, as by the actual indicators achieved at the level of user applications and cluster usage modes. It is also
shown that executable automatic models can be applied at almost all levels of cluster computing systems subject
orientation.

Keywords: cluster computing system, intermediate level application, functional architecture, finite automaton
models, logical-probabilistic model, logical-algebraic model, query processing modes, simulation results

https://doi.org/10.32362/2500-316X-2025-13-6-7-24
https://www.elibrary.ru/WGZAHH
mailto:petushkov@mirea.ru

8

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

For citation: Petushkov G.V. Organization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing. Russian Technological
Journal. 2025;13(6):7−24. https://doi.org/10.32362/2500-316X-2025-13-6-7-24, https://www.elibrary.ru/WGZAHH

Financial disclosure: The author has no financial or proprietary interest in any material or method mentioned.

The author declares no conflicts of interest.

НАУЧНАЯ СТАТЬЯ

Организация и исследование
кластерных вычислительных систем

с функциональной архитектурой,
определяемой исполнимыми моделями.

Автоматные исполнимые модели
обработки информации

Г.В. Петушков @

МИРЭА – Российский технологический университет, Москва, 119454 Россия
@ Автор для переписки, e-mail: petushkov@mirea.ru

• Поступила: 04.08.2025 • Доработана: 12.09.2025 • Принята к опубликованию: 06.10.2025

Резюме
Цели. Актуальной является задача совершенствования функциональной архитектуры кластерных вычисли-
тельных систем за счет внедрения методологий создания программного обеспечения прикладного и проме-
жуточного уровней на основе формализованных спецификаций. Одна из таких методологий основана на ис-
пользовании автоматных спецификаций программного обеспечения вычислительных систем. Сложность
решения задачи вызвана разветвленностью построенных алгоритмов, а также наличием циклических участ-
ков. Время выполнения разветвленных участков программы и число проходимых циклов зависят от вида вво-
димых условий и на практике могут быть определены при помощи детальной имитационной модели и ана-
лиза созданной на ее основе управляющей программы. Цель работы – нахождение подходов к определению
функциональной архитектуры, которые возможно применять практически на основных уровнях предметной
ориентации кластерных вычислительных систем.
Методы. Предлагаемые и использованные методы основаны на концепции организации и исследования
вычислительных систем кластерного типа с функциональной архитектурой, определяемой исполнимыми ав-
томатными моделями.
Результаты. Предложены методы построения автоматных и логико-вероятностных моделей кластерных
вычислительных систем и создания на этой основе программных средств. Вводится понятие логико-веро-
ятностной модели «темпоральная вероятностная система канонических уравнений», которая позволит по-
лучить наглядную формализацию и реализацию автоматных моделей и рабочих программ, характерных для
кластерных и других приложений, и в существенной степени сократить число «инкрементных» сложений при
перечислении моментов дискретного времени. Главной особенностью новой логико-вероятностной модели
является сохранение в ее основе исходной системы канонических уравнений.

https://doi.org/10.32362/2500-316X-2025-13-6-7-24
https://www.elibrary.ru/WGZAHH
mailto:petushkov@mirea.ru

9

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

INTRODUCTION

Clustering is one of the most modern trends in
the field of computing systems development. The
emergence of cluster computing systems is due to
advances in network technologies, most often local
ones. When connecting machines into a cluster,
computers are combined using network technologies
based on bus architecture or a switch. This has led to an
increase in the number of computing clusters purchased
or leased as cloud services [1]. According to forecasts
by a number of marketing companies, the cluster
computing market is expected to grow to USD102.4 bn
by 2032.1

The scope of application of clusters in the organization
of information and subject-oriented systems used for
the collection, processing, and subsequent analysis of
information is constantly expanding. At the same time,
the limitations of simple homogeneous cluster systems
complicate the creation of systems which provide a high
level of structural and functional dynamics and effective
problem orientation based on the development of the
middleware level software.

The rapid development of applications based on
machine learning and artificial intelligence has created
a need to train a large number of models. At the current
time, one of the most powerful supercomputers in the world
is the Colossus supercomputer cluster based on Nvidia
graphics processing units (Nvidia Corporation, USA).
This cluster can theoretically achieve a performance
of about 497.9 exaflops (497900000 teraflops), setting
new standards in supercomputing power. The goal of
xAI (USA) is to increase the number of graphics processing
units (GPUs) in Colossus to 1 million in the coming

1  Cluster Computing Market Overview. https://www.
marketresearchfuture.com/reports/cluster-computing-market-1746.
Accessed June 02, 2025.

years.2 Currently, the xAI supercluster has begun training
a large language model (LLM) artificial intelligence
system using more than 200000 Nvidia H100, H200,
and GB200 graphics processing units optimized for
deep learning neural network tasks. The cluster network
is based on a high-speed Nvidia Spectrum-X Ethernet
switch with a bandwidth of up to 800 Gb/s.3

The functional architecture of computing clusters
is based on the coordinated operation of the following
components: workflow management system; cluster
monitoring system; libraries for parallel processing;
cluster management tools; global process space
connecting all cluster nodes; resource management
system; network (possibly parallel) file system; and
network services, including cloud services, providing
access to the cluster for many users [1]. It is assumed
that current issues in the field of high-performance
computing will remain relevant in the future: the need
for further significant increases in parallelism and data
transfer speeds; the development of high-performance
computing architecture and technology; the trend
towards workflows and use cases extending beyond
data centers; the existence of many powerful scientific
and industrial drivers; and the transition from high-
performance computing as isolated systems to high-
performance infrastructures [2].

An important step in the development of science
and industry is linked to the development and

2  Tyson M. Elon Musk fires up ‘the most powerful AI
cluster in the world’ to create the ‘world’s most powerful AI’ by
December – system uses 100000 Nvidia H100 GPUs on a single
fabric. Published July 22, 2024. https://www.tomshardware.com/
pc-components/gpus/elon-musk-fires-up-the-most-powerful-ai-
training-cluster-in-the-world-uses-100000-nvidia-h100-gpus-on-a-
single-fabric. Accessed June 02, 2025.

3  Half a million GPUs in four months: how Musk is building
the world’s most powerful cluster. https://www.braintools.ru/
article/18041. Accessed June 02, 2025 (in Russ.).

Выводы. Сделан вывод о том, что выбор системной и функциональной архитектуры вычислительного класте-
ра должен определяться не столько указанными производителем пиковыми характеристиками коммуника-
ционной аппаратуры, сколько реальными показателями, достигаемыми на уровне приложений пользовате-
лей и режимов использования кластера. Показано, что исполнимые автоматные модели могут применяться
практически на всех уровнях предметной ориентации кластерных вычислительных систем.

Ключевые слова: вычислительная система кластерного типа, приложение промежуточного уровня, функ-
циональная архитектура, логико-вероятностная модель, логико-алгебраическая модель, режимы обработки за-
просов, результаты моделирования

Для цитирования: Петушков Г.В. Организация и исследование кластерных вычислительных систем с функцио-
нальной архитектурой, определяемой исполнимыми моделями. Автоматные исполнимые модели обработки ин-
формации. Russian Technological Journal. 2025;13(6):7−24. https://doi.org/10.32362/2500-316X-2025-13-6-7-24,
https://www.elibrary.ru/WGZAHH

Прозрачность финансовой деятельности: Автор не имеет финансовой заинтересованности в представлен-
ных материалах или методах.

Автор заявляет об отсутствии конфликта интересов.

https://www.marketresearchfuture.com/reports/cluster-computing-market-1746
https://www.marketresearchfuture.com/reports/cluster-computing-market-1746
https://www.tomshardware.com/pc-components/gpus/elon-musk-fires-up-the-most-powerful-ai-training-cluster-in-the-world-uses-100000-nvidia-h100-gpus-on-a-single-fabric
https://www.tomshardware.com/pc-components/gpus/elon-musk-fires-up-the-most-powerful-ai-training-cluster-in-the-world-uses-100000-nvidia-h100-gpus-on-a-single-fabric
https://www.tomshardware.com/pc-components/gpus/elon-musk-fires-up-the-most-powerful-ai-training-cluster-in-the-world-uses-100000-nvidia-h100-gpus-on-a-single-fabric
https://www.tomshardware.com/pc-components/gpus/elon-musk-fires-up-the-most-powerful-ai-training-cluster-in-the-world-uses-100000-nvidia-h100-gpus-on-a-single-fabric
https://www.braintools.ru/article/18041
https://www.braintools.ru/article/18041
https://doi.org/10.32362/2500-316X-2025-13-6-7-24
https://www.elibrary.ru/WGZAHH

10

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

implementation of the ELBJUWEL supercomputer
with artificial intelligence (AI) capabilities.4 The efforts
of the developers are focused on creating a unique
innovative platform which will combine expertise in
the field of AI and high-performance computing. The
works [3–5] are devoted to describing the needs for
high-performance computing when solving machine
learning problems.

The next problem faced by supercomputing centers
is the inefficient use of resources for high-performance
computing when resolving certain computational tasks.
Such tasks can block valuable computing resources and
slow down calculations for other users. In order to address
this issue, the National Research University Higher
School of Economics has developed a task monitoring
system for the cHARISMa high-performance computing
cluster which automatically generates conclusions about
their performance [6]. This university has accumulated
extensive experience in using the supercomputer
complex based on the cHARISMa cluster to resolve
tasks for various categories of users. These tasks include:
searching, analyzing, and forecasting data on social
networks [7]; researching machine learning models
for predicting the risks of major cardiovascular events
in patients with myocardial infarction and different
genotypes [8]; and many others.

Additional information on existing software
packages in cluster systems is provided in [9–11].

Russian cluster projects include the MVS-100K
supercomputer installed at the Interdepartmental
Supercomputer Center of the Russian Academy of
Sciences and the Lomonosov supercomputer installed
at the Research Computing Center of Lomonosov
Moscow State University as part of the SKIF project5.
The “Chervonenkis,” “Galushkin,” and “Lyapunov”
supercomputers, created by Yandex, also have a cluster
architecture6. They run on Nvidia A100 graphics
accelerators (Nvidia A100 GPUs with tensor cores)
with an InfiniBand communication system based on
Mellanox switches (Israel)7.

Many issues related to the computing resources
required by ordinary users and organizations arise in
connection with the organization and use of computing
clusters. Therefore, the review of literature must be

4  ParTec AG: A More Efficient Supercomputer for the AI
Revolution. Frankfurt, Bloomberg; 2024. 43 p.

5  Center for Collective Use of Ultra-High-Performance
Computing Resources at Lomonosov Moscow State University.
https://parallel.ru/cluster. Accessed June 02, 2025 (in Russ.).

6  Chernyavtseva V. Yandex has created three of Russia’s most
powerful supercomputers. https://nplus1.ru/news/2021/11/15/
chervonenkis. Accessed June 02, 2025 (in Russ.).

7  Russia suddenly burst into the world’s top most powerful
supercomputers. https://www.cnews.ru/news/top/2021-11-16_
rossijskie_superkompyutery. Accessed June 02, 2025 (in Russ.).

supplemented with an analysis of some characteristic
foreign sources. Articles [12, 13] note the shortcomings
of cluster computing systems. Some of these
shortcomings contradict the advantages which can be
explained by the specifics of enterprises and users.
Clusters are difficult to manage without experience and
given a large cluster size, it will be difficult to detect
a malfunction.

The problem with troubleshooting arises because
the user is dealing with a single entity, and when
a malfunction is detected, it is unclear which component
is causing the problem.

The following circumstance can also be attributed
to the disadvantages of cluster computing systems [14].
Clusters are not suitable for commercial and business use
by all consumers, as they require special programming
skills, knowledge of systems and programming languages
that are not widely used for commercial purposes.
Personnel are required to have special technical skills
for operation and administration.

A large number of the medium-cost and low-cost
computing clusters considered are based on various
types of switches, including Infiniband and Ethernet
switches. In the example of the computing cluster and
its infrastructure as shown in Fig. 1, traffic from different
local networks can intersect if this does not interfere
with the main function of the cluster nodes. Cluster
nodes N1–N16 process user load; U1 and U2 are control
nodes which monitor the status of the cluster’s hardware
and software and take action to reconfigure it in response
to any event occurring in the cluster; M1 and M2 are
shared backup storage devices. They store information
accessible to all cluster nodes and used by them to access
shared data, including data about a failed node, which
can be used by a backup node. S1 and S2 are servers
accessible via public and client networks. The private
network L2 level switch exchanges data between cluster
nodes using hardware MAC8 addresses. Command
messages used by nodes to check the cluster’s operability,
reconfigure it, and synchronize it are transmitted over
the private network.

The L3 level switch of the public network exchanges
data using IP9 or hardware MAC addresses. At the
public network level, access to the cluster is virtualized
as a single system. A local network built on the basis of
an L2+ level switch with added features provides client
access to the cluster. The presence of several network
switches in the computing cluster infrastructure enables
the use of three main types of networks: communication,
transport, and service [15].

8  Media Access Control.
9  Internet Protocol Address is a unique numerical device

identifier.

https://parallel.ru/cluster
https://nplus1.ru/news/2021/11/15/chervonenkis
https://nplus1.ru/news/2021/11/15/chervonenkis
https://www.cnews.ru/news/top/2021-11-16_rossijskie_superkompyutery
https://www.cnews.ru/news/top/2021-11-16_rossijskie_superkompyutery

11

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

K1 K2 K3 K4

Controlling
hub U1

Controlling
hub U2

Server S1 Server S2

Hub N1 Hub N2 Hub N15 Hub N16

Local network switch
of the L2+ level

Public network switch of the L3 level

Private network switch of the L2 level

...

Clients

M1 M2

General
back-up store

Cluster
hubs

Fig. 1. Option for organizing a computing cluster
and its infrastructure

In order to solve the pressing tasks set out in this
paper—organizing an effective functional architecture
for clusters by creating new application-class and
middleware-class software—it is important to focus
on existing, well-developed software: message
processing services—message-oriented middleware,
services that provide big data analytics and connection
to data storage—data warehousing and big data
analytics data warehousing and big data analytics,
and protocols and products that provide interprocess
communications [15].

1. AUTOMATIC MODELS
OF INTERMEDIATE-LEVEL CLUSTER

APPLICATIONS

A computing system in operation [1] is defined at
an abstract level as a set of functional devices operating
in time. When assessing the quality of operation, it is
proposed that the content of the operations performed

be abstracted and the operation of functional devices in
the time reference system be considered. Therefore, it
will be useful to construct formal models for analyzing
the functioning of computing clusters. In addition, as
follows from the “Computing and Cluster Systems”
course [15], “in practice, the peak characteristics of
communication equipment specified by the manufacturer
are not as important as the actual performance achieved
at the user application level.” This statement implies that
the choice of the system and functional architecture of
a computing cluster should be determined mainly by the
applications and modes of use of the cluster, including
those implemented at the middleware level. Therefore,
part of the application software and middleware can
be conditionally considered as system software that
determines the functionality of the entire computer
cluster.

The main effect of interpreting the models
proposed is the possibility that they can be used as
formalized specifications when describing parallel
processes in cluster computing systems and networks
at the level of tasks, data, algorithms, and machine
instructions, i.e., at the basic levels of abstraction—
from conceptual representation to implementation
details. The selection of the following model examples
based on program diagrams is based on compliance
with a high level of generality. The algorithms must
contain all basic algorithmic constructs which enable
the implementation of sequences, branches, and
cycles. It must be possible to reinterpret types of
parallelization—at the task level, at the data level,
at the algorithm level, and at the machine-level
command level, with the possibility of alternating
sequential single-threaded parts of the program with
multi-threaded parallel sections.

However, it is only possible to investigate the
actual operation of applications on a working cluster.
The problem can be resolved at the preliminary stages
with less effort and expense by using executable formal
models, on the basis of which simulation models of the
cluster’s operation should be constructed. These models
may include characteristic or simplified fragments of
real applications.

At this stage of model construction, the semantics of
data and operations are not considered, i.e., preserving
the generality of the models, the meanings of variables
and operation symbols are not interpreted. It is assumed
that the methods for creating and interpreting models
can be further used in the creation of working interpreted
applications when the cluster is put into operation. In
this case, formal models can play the role of formalized
specifications.

Convenient models for subsequent use for these
purposes are: graph-scheme algorithm language (GSA),
finite automata, and logic-algebraic models based on

12

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

first-order predicate logic. This subsection proposes
using Moore’s finite partial automaton model10 [16].
This model is also well known from works in the field
of microprogramming [17, 18]. Figures 2 and 3 show
examples of GSA selected to illustrate the creation
of application models: GSA1 and GSA2. The main
criteria for selection are the usual requirements for
GSA correctness and the presence of sequences
of operators and branches. GSA1 (Fig. 2) contains
operator vertices (hereinafter simply operators)
A0, A1, A2, …, A16, A27, AK. In addition, GSA1 contains
parallel fragments represented by structured operators
C1, C2, …, C8, each of which corresponds to an
“internal” copy of GSA2 (Fig. 3); each copy, or clone,
contains local operators A17, A18, A19, …, A25, A26.

Both GSAs contain conditional vertices (hereinafter
referred to as logical conditions) x1, x2, …, x5 (GSA1)
and x6, x7, …, x10 (GSA2). Condition symbols are
treated as names of unary predicates. The values of
logical conditions—0 (true) or 1 (false)—are calculated
after the execution of operators, including operators for
entering input conditions (input signals, input symbols,
or partial automata).

A0

0 1

0 1

0 10 1

1 0

A1

A2

A5

A4A3

A8A7

A11 A12A10A9

C1 C2 C3 C4 C5 C6 C7 C8

A15A14

A6

A13

A16

A27

AK

x1

x2

x5

x4x3

Fig. 2. Flowchart of the GSA1 algorithm
for cluster application operation

10  Gurenko V.V. Introduction to Automata Theory. Moscow:
Bauman Moscow State Technical University; 2013. https://rusist.
info/book/10028635?ysclid=mf5p2z07v616437010. Accessed
June 02, 2025 (in Russ.).

The construction and study of automata models will
be carried out for the case of SPMD (Single Program,
Multiple Data) methods. In the following subsections,
other executable models will be constructed based
on a logical-algebraic approach: MPMD (Multiple
Programs, Multiple Data) and MPSD (Multiple
Programs, Single Data) [1]. The latter method is most
suitable for pipeline data processing. All these methods
are used to achieve parallelism. There are a number
of implementation options for these methods used in
computing clusters.

0

01

01

011

0 1

A17

A18 A21

A22

A23A20

A24

A25 A26

A27

A19

x6

x7

x8 x9

x10

Fig. 3. Block diagram of the GSA2 algorithm for a single
copy of a parallel application section for a cluster

Canonical equation systems (CES) [18, 19], which
describe transitions from one state to another, were
chosen as the initial language for specifying partial
automata. Permissible parallel transitions correspond,
for example, to the representation of parallel sections
in modified logical diagrams of algorithms, known
from works on microprogramming [20]. In these
diagrams, parallel sections are considered to be private
logical diagrams of algorithms and enable for simple
reinterpretation into the graphical form of GSA. Parallel
GSA languages were also used in works [21, 22]. The
structuring of hierarchical automata states was proposed
earlier in a number of works [23–25].

The following concepts are used in the proposed
CES models. Operators are assigned a one-to-one

https://rusist.info/book/10028635?ysclid=mf5p2z07v616437010
https://rusist.info/book/10028635?ysclid=mf5p2z07v616437010

13

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

correspondence with so-called private events, represented
by unary predicates of the form Ai(t), defined on the set
of discrete time values t. Partial input variables, or input
conditions, are represented by unary predicates of the
form xj(t), also defined on the set of discrete time values t.
Unary predicates of the form zk(t), are also introduced to
take true values only after the corresponding events of
the form Ak(t) have already occurred. This corresponds
to the fact that the operator Ak has completed its work.
Thus, when zk(t) = 0 (false), the event Ak(t) is preserved,
and when zk(t) = 1 (true), it is not preserved. The first
condition for the event Ak(t) enables its execution to
be extended, and when the second, opposite condition
is fulfilled, the event Ak(t) is completed. The condition
for the onset of an event corresponds to the transition
from the preceding event. The remaining features of the
CES construction can be conveniently explained using
examples of the transition from GSA to CES.

Figure 4 shows the state transition graph of the
sequential application’s automaton model, constructed
by transitioning from GSA1 and GSA2. Section С0 is
highlighted, intended for subsequent cloning
when transitioning to the application simulation
corresponding to the SPMD cluster operating mode.
This graph, as will be required later, can also be viewed
as a sequential composition of two partial automata:
the first automaton corresponds to states 1–16, and the
second to states 17–27.

Figures 2 and 3 use standard GSA notation for logical
conditions: x1, x2, …, x10, which are also considered in
the CES entry-level language for specifying partial finite
automata as names of unary predicates. In Fig. 4 and
further in Fig. 5, other names are used for the three input
variables. These are also convenient for further testing of
applications using partial automaton analysis: х (value
х = true after the end of any operator without calculation
or without entering a condition value); nx (value
nx = true if, after the end of the operator, a false condition
value is calculated or entered, otherwise nx = false);
and yx (value yx = true if, after the end of the operator,
a true condition value is calculated or entered, otherwise
yx = false). The locations for calculating and checking
these variables are uniquely determined by the location
of the operator. If necessary, this can be used for the usual
numbering of logical conditions x1, x2, …, x10 and used
further in the compilation of CES and logic-algebraic
expressions. In Fig. 4, the first state is designated as the
initial, starting (Start) state, and the 28th as the final,
ending (End).

A system of canonical equations can be considered
as a system of production rules designed to represent
knowledge in automata models. Productions can be used
to represent knowledge that can take the form of rules
such as “premise → conclusion, condition → action.”
The left side of the rule is called the antecedent, and

the right side is called the consequent. The antecedent
is the premise of the rule (the conditional part) and
consists of elementary statements using the logical
symbols AND, OR, NOT. The consequent (conclusion)
includes one or more statements which express either
a certain fact or an indication of a specific action to
be performed [26–28]. A set of productions forms
a production system for which special procedures are
specified for selecting productions and executing one or
another production from among those selected.

A distinctive feature of CES, considered as
a type of production system, is the placement of
the conditional part (antecedent) on the right, and
the action or conclusion (consequent) on the left.
Therefore, the direction of the conclusion is from right
to left. This is largely due to the theory and practice
of microprogrammed automata synthesis and the
representation, along with canonical equations, of
excitation functions of elementary automata (D-triggers,
or delay elements) in the unitary encoding of the states of
a finite partial automaton [17, 18, 29]. In the future, the
concept of “product” will also be used in the construction
of logical-algebraic models of cluster-type systems.

2. AUTOMATIC CES MODEL
OF THE SEQUENTIAL PART

OF THE APPLICATION

Figure 4 shows the state transition graph of the
sequential application’s automaton model. Some of
the states a1, a2, …, a16, a28 were obtained by marking
the states of the Moore automaton on GSA1, shown
in Fig. 2. The rest of the states a17, a18, …, a27 belong to
the subgraph C0, which was constructed by marking the
states of the Moore automaton on GSA2.

At this stage, the recurrent predicate equations of
the SPSeq CES for GSA1 are compiled without taking

yx

yx

yx

yx
yx

yx

yx

yx

yxyx
nx nx

nx

nx
nx

nx
nx

nx
nx

nx

x

xx
x

x

x

x

x
xx

x
x
x

x
x

x
x

Start

End

1 2

3

4

5 6

7

8

9

10

11

12

13

14 15

1617

182425

262728

22
2319

1820

C0

Fig. 4. State transition graph of the sequential
application automaton model; section С0, is highlighted,

intended for subsequent cloning when transitioning
to SPMD mode

14

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

into account the structured operators C1, C2, …, C8 and,
accordingly, without the structured states
a17, a18, …, a27 of the automaton, i.e., the model
currently covers only operators A0, A1, …, A16:

A0(t + 1) = A0(t) & ¬x0(t) ∨ xbegin(t);
A1(t + 1) = A0(t) & x0(t) ∨ A1(t) & ¬z1(t);
A2(t + 1) = A1(t) & z1(t) ∨ A2(t) & ¬z2(t);
A3(t + 1) = A2(t) & z2(t) & ¬x1(t) ∨ A3(t) & ¬z3(t);
A4(t + 1) = A2(t) & z2(t) & x1(t) ∨ A4(t) & ¬z4(t);
A5(t + 1) = A3(t) & z3(t) ∨ A4(t) & z4(t) ∨ A5(t) & ¬z5(t);
A6(t + 1) = A5(t) & z4(t) ∨ A6(t) & ¬z6(t);
A7(t + 1) = A6(t) & z6(t) & ¬x2(t) ∨ A7(t) & ¬z7(t);
A8(t + 1) = A6(t) & z6(t) & x2(t) ∨ A8(t) & ¬z8(t);
A9(t + 1) = A7(t) & z7(t) & ¬x3(t) ∨ A9(t) & ¬z9(t);
A10(t + 1) = A7(t) & z7(t) & x3(t) ∨ A10(t) & ¬z10(t);
A11(t + 1) = A8(t) & z8(t) & ¬x4(t) ∨ A11(t) & ¬z11(t);
A12(t + 1) = A8(t) & z8(t) & x4(t) ∨ A12(t) & ¬z12(t);
A13(t + 1) = A9(t) & z9(t) ∨ A10(t) & z10(t) ∨ A11(t) &

& z11(t)∨ A12(t) & z12(t) ∨ A13(t) & ¬z13(t);
A14(t + 1) = A13(t) & z13(t) & x5(t) ∨ A14(t) & ¬z14(t);
A15(t + 1) = A13(t) & z13(t) & ¬x5(t) ∨ A15(t) & ¬z15(t);
A16(t + 1) = A14(t) & z14(t) ∨ A15(t) & z15(t) ∨ A16(t) &

& ¬z16(t),

where xbegin(t) is the input variable (“signal”).
Copies (or clones) of the application module

compiled according to the SPSeq CES for GSA1 are loaded
onto all computing nodes of the cluster and executed
in parallel mode, processing the same data or entering
data of the same type. The automatic model assumes
different execution times for events corresponding to
application operators. In the further description of the
CES equations, for the sake of brevity the terms “event”
and “state” will be considered synonymous.

Below are descriptions of some key equations from the
given CES. The initial equation has the following form:

A0(t + 1) = A0(t) & ¬x0(t) ∨ xbegin(t).

According to this equation, when the true value of the
input variable xbegin(t) = true appears in the automaton,
the initial event A0(t + 1) = true is set in the next cycle,
which corresponds to its inception. This event is retained
as long as the condition for its retention A0(t) & ¬x0(t)
at A0(t + 1) = true and x0(t) = false. Further, when
the input signal x0(t) = true is received, the true
condition A0(t) & x0(t) for the initiation of a new
event A1(t + 1) is formed in the automaton:

A1(t + 1) = A0(t) & x0(t) ∨ A1(t) & ¬z1(t).

This event persists as long as the condition
A1(t) & ¬z1(t) for its persistence is true. It will end
with (A1(t + 1) = false, i.e., this statement will become
false) when operator A1 generates the sign z1(t) = true
indicating the end of its work. As can be seen from the
recursive predicate equations of this SPSeq CES, the event
of establishing the truth of the antecedent (right statement)
occurs at a fixed moment in time t, and the event of
establishing the truth of the consequent (left statement)
occurs at the next moment in time (t + 1).

3. AUTOMATIC CES MODEL OF ONE OF THE
PARALLEL SECTIONS (CLONES) OF THE

APPLICATION

Figure 4 shows the state transition graph of the
sequential application’s automaton model; section С0 is
highlighted. This is intended for subsequent cloning
when transitioning to SPMD mode.

Recursive predicate equations of CES MDClon
for GSA2:

A17(t + 1) = A16(t) & z16(t) ∨ A17(t) & ¬z17(t);
A18(t + 1) = A17(t) & z17(t) & x6(t) ∨ A20(t) & z20(t) ∨

∨ A23(t) & z23(t) ∨ A18(t) & ¬z18(t);
A19(t + 1) = A18(t) & z18(t) & x7(t) ∨ A19(t) & ¬z19(t);
A20(t + 1) = A19(t) & z19(t) & x8(t) ∨ A20(t) & ¬z20(t);
A21(t + 1) = A17(t) & z17(t) & ¬x6(t) ∨ A21(t) & ¬z21(t);
A22(t + 1) = A18(t) & z18(t) & ¬x7(t) ∨ A22(t) & ¬z22(t);
A23(t + 1) = A22(t) & z22(t) & ¬x9(t) ∨ A23(t) & ¬z23(t);
A24(t + 1) = A19(t) & z19(t) & ¬x8(t) ∨ A22(t) & z22(t) &

& x9(t) ∨ A21(t) & ¬z21(t) ∨ A24(t) & ¬z24(t);
A25(t + 1) = A24(t) & z24(t) & ¬x10(t) ∨ A25(t) & ¬z25(t);
A26(t + 1) = A24(t) & z24(t) & x10(t) ∨ A26(t) & ¬z26(t);
A27(t + 1) = A25(t) & z25(t) ∨ A26(t) & z26(t) ∨ A27(t) &

& ¬z27(t).

The shared SPSeq CES model and a single copy of the
MDClon, CES model, taken together, define a single CES
model designated SPSeq * MDClon, where the symbol “*”
denotes the operation of combining two CESs into one
common CES. The state transition graph for this model is
shown in Fig. 4. Another interpretation, as mentioned earlier,
allows the state transition graph SPSeq * MDClon to be
considered as a sequential composition of partial automata.

4. SEQUENTIALLY-PARALLEL COMPOSITION
OF AUTOMATONS DETERMINING

THE OPERATION OF CLUSTER COMPUTERS

The flowchart of the GSA1 algorithm
in Fig. 2 contains parallel sections, abbreviated as
structured operators C1, C2, …, C8. In a complete

15

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

single-level representation, each of these operators
is replaced by GSA2 in Fig. 3 while, in the program
implementation, it is executed independently of the
others on its “own” cluster computer. The complete
network CES model of a sequential-parallel network of
automata is represented by the following expression:

SPSeq * (ParReplicate(1..8)MDClon),

wherein Replicate(1..8) is the inclusion of the CES into
the general system 8 times in a row. Par is the indication
that these replicas must be executed in parallel.

The state transition graph for this network of
partial automata with structured states C1–C8 is
shown in Fig. 5. When constructing a network
CES model, equations need to be compiled to include
structured events. Each structured event represents
a nested partial automaton. The use of hierarchical
finite automata is a fundamentally important method
of software design, and corresponds to the concept of
a “subroutine”.

The advantage of the method of formalizing
algorithms using CESs is the compact logical description
of transition functions [16, 17]. Structured events with
the same names are introduced in a manner analogous
to structured states C1–C8. Each structured event is
“embedded” in already compiled MDClon.

The initiation and continuation of events С1–С8
(initiation and parallel operation of independent
software modules) are described by the following
CES SC:

С1(t + 1) = A16(t) & z16(t) ∨ C1(t) & ¬w1(t);
С2(t + 1) = A16(t) & z16(t) ∨ C2(t) & ¬w2(t);
С3(t + 1) = A16(t) & z16(t) ∨ C3(t) & ¬w3(t);
С4(t + 1) = A16(t) & z16(t) ∨ C4(t) & ¬w4(t);
С5(t + 1) = A16(t) & z16(t) ∨ C5(t) & ¬w5(t);
С6(t + 1) = A16(t) & z16(t) ∨ C6(t) & ¬w6(t);
С7(t + 1) = A16(t) & z16(t) ∨ C7(t) & ¬w7(t);
С8(t + 1) = A16(t) & z16(t) ∨ C8(t) & ¬w8(t).

Each of the events С1–С8 originates when the
compound statement A16(t) & z16(t) is true, i.e., it is
a consequence of the successful completion of the
event A16. Each of these events Сi persists until the
termination condition wi(t), i = 1, 2, …, 8 is satisfied.
Events С1–С8 start simultaneously, but do not
necessarily end simultaneously, since the termination
conditions may not depend on each other. However,
the transition to event A28 should only occur after
all events С1–С8 have been completed. Therefore,
the CES model should be followed by events which
determine barrier synchronization and consist of

waiting for the completion of the events С1–С8 in each
of the branches, as well as the subsequent initiation and
retention of indicator events D1–D8 for the termination
of all branches.

yx
yx

yx

yx

yx

nx

nx
nx

nx

nx

x
x
x

x

x xxxx
x

xxxxxxxx

x x x x x x x x

Start

End

Assemble

Split

Group C1–C8

1 2

3

4
5

6

7

8

9101112

13

14

1516

С1 С2 С3 С4 С5 С6 С7 С8

28

29

Fig. 5. Sequential-parallel network of automata
with nested states of application execution in a cluster

in SPMD mode

The system of canonical SD equations describing the
origin and conservation of these events has the following
form:

D1(t + 1) = C1(t) & w1(t) ∨ D1(t) & ¬D9(t);
D2(t + 1) = C2(t) & w2(t) ∨ D2(t) & ¬D9(t);
D3(t + 1) = C3(t) & w3(t) ∨ D3(t) & ¬D9(t);
D4(t + 1) = C4(t) & w4(t) ∨ D4(t) & ¬D9(t);
D5(t + 1) = C5(t) & w5(t) ∨ D5(t) & ¬D9(t);
D6(t + 1) = C6(t) & w6(t) ∨ D6(t) & ¬D9(t);
D7(t + 1) = C7(t) & w7(t) ∨ D7(t) & ¬D9(t);
D8(t + 1) = C8(t) & w8(t) ∨ D8(t) & ¬D9(t).

The following single equation, additionally
designated as the CES D9, system, describes the
expectation of the occurrence of all indicator
events D1–D8 for the completion of parallel work on
all branches:

D9(t + 1) = D1(t) & D2(t) & D3(t) & D4(t) & D5(t) &
& D6(t) & D7(t) & D8(t) ∨ D9(t) & ¬v9(t).

The equations describing the transition to the final
events A28, A29 and further to event A1 of the control
module are as follows:

A28(t + 1) = D9(t) & v9(t) ∨ A28(t) & ¬z28(t);
A29(t + 1) = A28(t) & z28(t) ∨ A29(t) & ¬z29(t);

A1(t + 1) = A29(t) & z29(t) ∨ A1(t) & ¬z1(t).

16

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

In order to use the equations for the events A28
and A29 in a combined expression for a network of
partial automata, they are designated as separate
CESs A28 and A29, respectively.

In order to implement a detailed network CES model
for executing an application in a cluster in sequential-
parallel processing (SPMD) mode, all equations must be
combined in the following sequence:

SPMD: SPSeq * SС * SD * D9 * A28 * A29,

moreover, the initiation of the previously described
parallel replicas ParReplicate(1..8)MDClon is performed
upon the occurrence of the events С1–С8, determined by
the CES SС subsystem. The completion of these replicas
occurs upon the occurrence of the events D1–D8,
determined by the CES SD subsystem. When the replicas
are running, the range of variation of the variable t,
which counts system time, is expanded.

The resulting general CES model of the network of
application execution machines in a cluster in SPMD
sequential-parallel processing mode belongs to the
class of executable models. It is easily programmable
in algorithmic languages containing message passing
operators, as well as in assembly language for
microcontrollers and microprogramming language.
A simulation model is built on its basis, enabling the
functioning of the cluster system to be studied at the
micro level.

The networks of partial finite automata considered
in this work consist of automata which simulate
application of software modules of a computing
cluster connected by a message passing interface
at the inputs and outputs. Each module can receive
a message at the input which transmits control with
data, process it, and transmit a control message with
data to the next module. Other types of inter-module
interaction in the cluster are not considered. Therefore,
issues of automata composition and other methods of
constructing complex automata from simple ones are
not taken into account here [30].

Automatic programming is currently considered
one of the technologies to significantly reduce the time
required to write programs and simplify their testing [31].
Systems of canonical equations also enable the creation
of application, intermediate, and system-level programs
based on them.

As is well known, mutual blocking, ambiguity, and
deadlock and other configurations lead to violations
of GSA correctness. Therefore, the work proposes to
resolve the problem of checking the graph scheme
for correctness on an abstract model of algorithm
interactions—on Petri nets [32, 33]. Methods for
transitioning from a parallel GSA to a Petri net are
given, for example, in [21, 22].

5. FORMALIZATION OF LOGICAL-PROBABILISTIC
MODELS OF PARTIAL AUTOMATON NETWORKS

CREATED BASED ON THE CES LANGUAGE

The concept of a logical-probabilistic model such as
“temporal probabilistic CES” (TPCES) will enable the
visual formalization and implementation of automatic
models and working programs characteristic of cluster
and other applications, for example, with pipeline
parallelism. This will also significantly reduce the
number of “incremental” additions when listing discrete
time moments:

TPCES = (CES0, S, X, TX, WTX, TZ, WTZ),

wherein network CES0 is the initial language adopted
for describing the CES finite state machine network,
limited by the description of partial machines and
characterized by cluster and pipeline computing
systems, mainly by the sequential execution of
events in time. Furthermore, only simple parallelism
of events is enabled without interaction between
copies of CES0 branches, ending with barrier
synchronization of branches. S is a finite set of
events {S0(t), S1(t), …, Sn(t)} specified by unary
predicates. X is a finite set of input events specified by
unary predicates {X0(t), X1(t), …, Xm(t)}. TX is a finite
set of random time intervals {tx0, tx1, …, txm} from the
current moments to the moments of occurrence of input
events X. WTX is a finite set of probability distribution
functions of the form P{txk = i} = pki, i = 0, 1, …, ik,
of random time intervals from the set TX. TZ is
a finite set of random time intervals {tz0, tz1, …, tzn}
of preservation. Thus, the occurrence of events from
the set S; WTZ is a finite set of probability distribution
functions of the form P{tzr = j} = prj, j = 0, 1, …, jr, of
random time intervals from the set TZ.

Random variables (pseudorandom variables in
software implementations) tx and tz only take non-
negative integer values. Only finite probability
distributions of integer random variables are considered.
It is also possible to use integer constants as values for
tXk, k = 0, 1, …, m and tzr, r = 0, 1, …, n.

The structure of an application containing
sequential and independent parallel sections forming
a network of automata may enable for a deeper level
of nesting, which is characteristic of most cluster
computing systems.

The initial non-interpretability of the TPCES model
enables it to be applied at the level of programs, program
modules, operators, down to the level of machine
commands and microprograms.

The general approach to developing a statistically
executable model of a cluster application is as follows.
The method of organizing a sequence of events is

17

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

used, in which periods of event generation alternate
with periods of event preservation. Let us assume, for
example, that for a sequential section of an application
formalized, for example, by the CES SPSeq system, the
actions specified by the following three equations are
performed:

A2(t + 1) = A1(t) & z1(t) ∨ A2(t) & ¬z2(t);
A3(t + 1) = A2(t) & z2(t) & ¬x1(t) ∨ A3(t) & ¬z3(t);
A4(t + 1) = A2(t) & z2(t) & x1(t) ∨ A4(t) & ¬z4(t).

As determined when constructing any equation, the
onset of the next event, for example, event A2(t + 1),
occurs at time (t + 1). For this event to occur at the
specified moment in time then at the previous moment
in time t the statements A1(t) and z1(t) need to be
true—i.e., event A1(t) would have occurred for the last
time at this moment, which would be indicated by the
appearance of the true value of the statement z1(t)—
the end of the action of the event A1(t). From the
moment of time (t + 1), event A2(t + 1) begins and
continues until statement z2(t) is false. The appearance
of the true value of the statement z2(t) will lead the
compound statement A2(t) & ¬z2(t) being become
false, and the condition for the continuation of
event A2(t) not to be fulfilled. At the next moment in
time, the event A2(t) will occur for the last time, and
if the statement A2(t) & z2(t) & ¬x1(t) is true, then
the event A2(t) will begin to occur (will originate) at
the next moment in time (t + 1”. The preservation of
the event A2(t) can be “extended” by moving to the
time mark t = t + tz2 of its end, where the value of the
time interval tz2 is determined using a pseudo-random
number generator with a given distribution law. Acting
in a similar way, the inception of the event A3(t + 1)
can be delayed by delaying the action of input
variable x1(t) by the amount of the time interval tx1.
This is achieved by moving to the time mark of the
event t = t + tx1 corresponding to the activation of the
variable x1(t). The value of the variable tx1 is set by
a pseudo-random number generator. The compound
statement A2(t) & z2(t) & ¬x1(t) will become true, and
then event A3(t + 1) will occur at the next moment
in time (t + 1). The preservation of the event A3 and
the initiation and preservation of the event A4 occur in
a similar manner. Thus, by transitioning from event
to event, the logical-probabilistic model of the cluster
application is implemented.

Figure 5 shows a network automaton model of
application execution in a cluster in SPMD sequential-
parallel mode. With the accepted mode of operation
of independent parallel programs in the parallel
section of the SPMD mode, independent MDClon-type
CES models can be used to represent structured
events C1–C8.

6. RESULTS OF STATISTICAL EXPERIMENTS
WITH CLUSTER SYSTEM MODELS

IN PARALLEL-SERIAL SPMD

Simulation statistical models of application
execution were constructed on the basis of automatic
probabilistic CES models. The table shows the
numerical values of the acceleration coefficient of the
application executed in SPMD mode on a computing
cluster, obtained from the constructed simulation model.
Following [1], acceleration is taken as the ratio of the
application execution time on one node (tseq + NtN) to
the sum (tseq + tN) of the execution time of the same
application in parallel mode on all N nodes of the
cluster tN, and the time tseq of a single execution of
a sequential section of the application:

k = (tseq + NtN) / (tseq + tN).

It was assumed that parallel sections are executed
independently of each other. Since the execution times
of sequential and parallelized sections are unknown in
advance, their statistical characteristics are determined
by performing a statistical experiment. Therefore,
in the given formula, tseq and tN are estimates of the
mathematical expectations of these time intervals.
In the simulation, it was assumed that the execution
time of each operator was uniformly distributed
from 1 to 9 ms. Transitions between conditions are
equally probable (0.5 each).

The results are summarized in the table. The entries
in the column headers indicate that the acceleration
coefficient k is calculated at the specified time
value T = tseq, expressed in units of model time (here in
milliseconds, ms).

Table. Estimates of the calculation acceleration
coefficient k determined using statistical models

N T = 0 T = 10 T = 20 T = 30 T = 40 T = 50

1 1 1 1 1 1 1

2 2 1.98 1.96 1.94 1.92 1.9

4 4 3.88 3.77 3.67 3.57 3.48

8 8 7.46 7.0 6.6 6.25 5.93

16 16 13.8 12.25 11.0 10.0 9.25

32 32 24.2 19.6 16.5 14.3 12.6

Examples of dependencies of the acceleration
coefficient k on the number of nodes in the cluster are
illustrated in Fig. 6.

18

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

0

5

10

15

20

25

30

35

1 2 4 8 16 32

Ac
ce

le
ra

tio
n

co
effi

ci
en

t

Number of nodes in the cluster

T = 0

T = 10

T = 20
T = 30
T = 40
T = 50

Fig. 6. Results of statistical experiments with cluster
models running a sequential-parallel application

LSeq * ParReplicate(i = 1..8)Ci

At T = 0, there is no sequential section, so the
acceleration factor values are equal to the number of
nodes involved. As values of T increase, the effect of
parallelization becomes less pronounced, since the
execution time of the sequential section has a greater
impact on the result of the acceleration factor calculation.

The complexity of the problem is caused by the
branching nature of the selected algorithm, as well as the
presence of cycles. The execution time of the branched
sections of the program and the number of cycles passed
depend on the type of conditions entered and, in practice,
can be determined using a detailed simulation model.
Both automaton CES models and models based on logical
algebraic expressions are executable models, since in order
to study the properties and dynamic behavior of the modeled
object, the model must be “executed,” i.e., run on a computer
and the processes of event change must be studied.

The acceleration coefficient k was calculated based
on the results of statistical modeling. For example,
Fig. 7 shows a histogram of the distribution of the
execution time tex = tseq + NtN of the application without
parallelization at N = 1.

1600

0
1920

Mean: 1008.622 S.D.: 106.373

tex, ms

Fr
eq

ue
nc

y

Fig. 7. Histogram of the execution time distribution
tex = tseq + 32t32 of the application at N = 1 without

parallelization; the abscissa axis shows the frequency class
boundaries for the histogram, the histogram step is 40 ms;

the ordinate axis shows the number of hits in each frequency
class with a sample size of 10000

Here, Mean1 = tseq + 32t32 = 1008.622 ms is
the estimate of the mathematical expectation of the
application execution time without parallelization.

Figure 8 shows a histogram of the application execution
time distribution for N = 32 with a sequential section and
parallelization. Here, Mean2 = tseq + t32 = 80.266 ms
is the estimate of the mathematical expectation of the
application execution time with a sequential section
and parallelization of the rest. The execution time of the
sequential section was determined in the same experiment
and is equal to tseq = 49.991 ms.

Then k = (tseq + 32t32)/(tseq + t32) = 12.58. The
same result is obtained by calculating the acceleration
coefficient using the known formula for Amdahl’s
second law [1]:

k = N / [βN + (1 – β)] = 12.61

at N = 32 with a proportion of sequential calculations

β = tseq / (tseq + 32t32) = 49.991 / 1008.622 = 0.04957.

A small error is caused by the use of the static
modeling method when evaluating time parameters in
the computing cluster model.

2500

0
2900 5

Mean: 80.255 S.D.: 20.751

tex, ms

Fr
eq

ue
nc

y

Fig. 8. Histogram of the execution time distribution
tex = tseq + t32 of the application at N = 32,

with a sequential section and parallelization of the rest;
the abscissa axis shows the frequency class boundaries
for the histogram, the histogram step is 5 ms; the y-axis

shows the number of hits in each frequency class
for a sample size of 10000

7. TRANSITION FROM AUTOMATIC MODELS
TO ASYNCHRONOUS LOGICAL‑ALGEBRAIC

MODELS OF CLUSTER COMPUTING SYSTEMS
AT THE MIDDLEWARE LEVEL

Logical-algebraic models are based on logical
calculi and algebraic systems. Logical calculi include
propositional calculus and predicate calculus.

The logical-algebraic operational expression (LAOE)
apparatus, based on the integration of a number of
models, is described from the perspective of various

19

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

applications. It is substantiated in works [34, 35].
However, in the final stages of testing the models by
means of studying their dynamics, the direct use of Petri
nets is recommended, in this way replacing or removing
“innovations” related to the additional use of first-order
predicate logic. In order to maintain continuity in the
names of the cluster application modules, the names of
the operator vertices in GSA1 (Fig. 2) and GSA2 (Fig. 3)
were chosen for the names of the positions. Double
indices were chosen for the indexing of the transitions
of the Petri net.

Figure 9 shows examples which illustrate transitions
from GSA to the CES model of a partial automaton and
further to the initial logical algebraic expressions for
a Petri net. Canonical equations have been compiled for
the fragments in Figs. 9a and 9b, and logical algebraic
expressions have been compiled for the fragment in Fig. 9c.

The system of canonical equations for the examples
in Figs. 9a and 9b is as follows:

A3(t + 1) = A2(t) & z2(t) ∨ A3(t) & ¬z3(t);
A4(t + 1) = A3(t) & z3(t) & ¬x1(t) ∨ A4(t) & ¬z4(t);

A5(t + 1) = A3(t) & z3(t) & x1(t) ∨ A4(t) & ¬z4(t).

The CES model is synchronous, and during
simulation, the current time of event execution must
be counted. This slows down the simulation program.
According to the previously introduced designations for
input variables in partial automata in Fig. 4 and Fig. 9b,
x = true, nx = ¬x1 and yx = x1.

The asynchronous LAOE system shown in Fig. 9c is
represented as follows:

T2, 3: [M(A2)&¬M(A3)]({M(A2) ¬ false, M(A3) ¬ true} ∨
∨ Ret);

T3, 4: [M(A3) & ¬M(A4) & ¬X(A3)]({X(A3) ¬ undef,
M(A3) ¬ false, M(A4) ¬ true} ∨ Ret);

T3, 5: [M(A3) & ¬M(A5) & X(A3)]({X(A3) ¬ undef,
M(A3) ¬ false, M(A5) ¬ true} ∨ Ret),

wherein undef is an undefined value of a logical
condition.

The LAOE expressions given in this case are
interpreted as rules for triggering transitions in a Petri net.
Here, M is a unary predicate, or a function for marking
positions, with the same name as the operators of the
original GSA; M(Ai) is a statement, the truth of which
corresponds to the presence of one label in position Ai,
while falsity corresponds to the absence of a label. X is
a unary predicate which defines the conditions in the
original GSA. X(Ai) is a statement which takes true,
false, or undefined values, determined by the result of
executing the operator Ai. The Ret operator enhances the
procedural component of the LAOE and transitions to
its repeated execution when the condition enclosed in
square brackets is false.

A logical-algebraic operational model can obviously
be constructed using a state transition graph (Fig. 9b),
which served as the basis for constructing
a Petri net (Fig. 9c). For this purpose, compliance is
required with the rule of forming conditions by operators,
including condition input operators.

The rules for triggering transitions can be further
modified or supplemented in accordance with the
requirements of the subject area. Additional events—
message transmission, message reception, transmission
acknowledgment, event duration determination,
represented by binary or ternary predicate modification
operations—may not correspond to the generally
accepted concepts of Petri nets. Therefore, transition

(a) (b) (c)

Fig. 9. Fragments of the GSA (a), the transition graph of a partial automaton (b), and a Petri net (c)

А2
А2 А2

T2, 3

T3, 4 T3, 5

А3 А3

А3
X(A3)–X(A3)

А4

А4

А4А5

А5

А5

x1

x1

1

10

–x1

20

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

rules can take the form of more general LAOEs, for which
other apparatus is used: apparatus of algorithmic algebra
systems [36, 37]; abstract machine networks [38];
relational calculus and algebras [39].

CONCLUSIONS

1.	 The relevance of the tasks addressed in this article
arises from the limitations of simple homogeneous
cluster systems which complicate the creation of
systems providing a high level of structural and
functional dynamics. New approaches to designing
the system and functional architecture of computing
clusters can be based on organizing the effective
use and management of cluster operations, by
means of enhanced problem orientation by creating
middleware applications and software.

2.	 The method proposed and used in this work is based
on the concept of architecture design defined by
executable models. This is a type of object-oriented
design.

3.	 A distinctive feature of the methods proposed in
this work is the use of automatic, network automata.
In the future, logical-algebraic approaches may
be implemented, in order to define the system and
functional architecture, applied at virtually all levels
of subject orientation of cluster computing systems.
These will ensure the implementation of the
architectural concept formed when creating a cluster
system model at various levels of abstraction—from
conceptual representation to implementation details.

4.	 The work shows that the main effect of interpreting
the proposed automata models and methods is the
possibility of their use as formalized specifications
when describing parallel processes in cluster
computing systems at the level of tasks, data,
algorithms, and machine instructions.

5.	 The results of statistical experiments show the
correctness of constructing probabilistic-automata
CES models and logical-probabilistic models, as
well as the possibility of using them as formalized
specifications.

REFERENCES

	 1.	 Voevodin V.V., Voevodin Vl.V. Parallel’nye vychisleniya (Parallel Computing). St. Petersburg: BHV-Petersburg; 2002.
608 p. (in Russ.).

	 2.	 Pleiter D. Supercomputer Architectures: Current State and Future Trends. The AQTIVATE Project, European Union’s
HORIZON MSCA Doctoral Networks Programmer, Grant Agreement No. 101072344. September 2023. 38 p.

	 3.	 Boldyrev A., Ratnikov F., Shevelev A. Approach to Finding a Robust Deep Learning Model. IEEE Access. 2025;13:
102390–102406. https://doi.org/10.1109/ACCESS.2025.3578926, https://doi.org/10.48550/arXiv.2505.17254

	 4.	 Mishenin R.M., Kostenetskii P.S. Modeling the task flow of the HSE computing cluster using SLURM Simulator. In:
Parallel Computing Technologies (PCT’2025): Proceedings of the 19th All-Russian Scientific Conference with International
Participation. Moscow; 2025. P. 324 (in Russ.).

	 5.	 Promyslov G., Efremov A., Ilyasov Y., Pisarev V., Timofeev A. Efficiency of Machine Learning Tasks on HPC Devices. In:
Parallel Computing Technologies (PCT’2025): Proceedings of the 19th All-Russian Scientific Conference with International
Participation. Moscow; 2025. P. 56–81 (in Russ.).

	 6.	 Kostenetskiy P.S., Kozyrev V.I., Chulkevich R.A., Raimova A.A. Enhancement of the Data Analysis Subsystem
in the Task-Efficiency Monitoring System HPC TaskMaster for the cHARISMa Supercomputer Complex at
HSE University. In: Sokolinsky L., Zymbler M., Voevodin V., Dongarra J. (Eds.). Parallel Computational
Technologies (PCT’2024). Communications in Computer and Information Science. Springer; 2024. V. 2241. P. 49–64.
https://doi.org/10.1007/978-3-031-73372-7_4

	 7.	 Slastnikov S.A., Zhukova L.F., Semichasnov I.V. Application for data retrieval, analysis, and forecasting in social networks.
Informatsionnye tekhnologii i vychislitel’nye sistemy = Journal of Information Technologies and Computing Systems.
2024;1:97–108 (in Russ.). https://doi.org/10.14357/20718632240110

	 8.	 Kirdeev A., Burkin K., Vorobev A., Zbirovskaya E., Lifshits G., Nikolaev K., Zelenskaya E., Donnikov M., Kovalenko L.,
Urvantseva I., Poptsova M. Machine learning models for predicting risks of MACEs for myocardial infarction patients with
different VEGFR2 genotypes. Front. Med. 2024;11:1452239. https://doi.org/10.3389/fmed.2024.1452239

	 9.	 Al-Khulaidi A., Sadovoy N. Analysis of existing software packages in the cluster systems. Vestnik Donskogo
gosudarstvennogo tekhnicheskogo universiteta = Vestnik of Don State Technical University. 2010;10(3):303–310 (in Russ.).
https://elibrary.ru/mvsqql

10.	 Ladygin I.I., Loginov A.V., Filatov A.V., Yankov S.G. Klastery na mnogoyadernykh protsessorakh (Clusters on Multi-Core
Processors). Moscow: MPEI Publ.; 2008. 112 p. (in Russ.). ISBN 978-5-383-00142-4. https://elibrary.ru/qmsnap

11.	 Kokots A.V. Development of a software model of an effective cluster computing system Vychislitel’nye seti. Teoriya i praktika
= Network Journal. Theory and Practice. 2016;2(29):6.1. Available from URL: https://network-journal.mpei.ac.ru/ (in Russ.).
Accessed June 02, 2025.

https://doi.org/10.1109/ACCESS.2025.3578926
https://doi.org/10.48550/arXiv.2505.17254
https://doi.org/10.1007/978-3-031-73372-7_4
https://doi.org/10.14357/20718632240110
https://doi.org/10.3389/fmed.2024.1452239
https://elibrary.ru/mvsqql
https://elibrary.ru/qmsnap
https://network-journal.mpei.ac.ru/

21

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

12.	 Kaur K., Rai A.K. A Comparative Analysis: Grid, Cluster and Cloud Computing. Int. J. Adv. Res. Computer Commun. Eng.
2014;3(3):5730–5734.

13.	 Omer S.M.I., Mustafa A.B.A., Alghali F.A.E. Comparative study between Cluster, Grid, Utility, Cloud and Autonomic computing.
IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE). 2014;9(6):61–67. http://doi.org/10.9790/1676-09636167

14.	 Kumar R. Comparison between Cloud Computing, Grid Computing, Cluster Computing and Virtualization. Int. J. Mod.
Computer Sci. Appl. (IJMCSA). 2015;3(1):42–47. http://doi.org/10.13140/2.1.1759.7765

15.	 Voevodin Vl.V., Zhumatii S.A. Vychislitel’noe delo i klasternye sistemy (Computing and Cluster Systems). Moscow:
MSU Press; 2007. 150 p. (in Russ.). ISBN 978-5-211-05440-0

16.	 Hopcroft J.D., Motwani R., Ulman J.D. Vvedenie v teoriyu avtomatov, yazykov i vychislenii (Introduction to Automata Theory,
Languages, and Computations): transl. from Engl. Moscow: Vil’yams; 2015. 528 p. (in Russ.). ISBN 978-5-8459-1969-4

		 [Hopcroft J.E., Motwani R., Ulman J.D. Introduction to Automata Theory, Languages and Computation. Boston, etc.:
Addison-Wesley Publ. Comp.; 2001. 521 p.]

17.	 Baranov S.I. Sintez mikroprogrammnykh avtomatov (Graf-skhemy i avtomaty) (Synthesis of Microprogrammed
Automata (Graph-Schemes and Automata)). Leningrad: Energiya; 1979. 231 p. (in Russ.).

18.	 Vashkevich N.P. Sintez mikroprogrammnykh upravlyayushchikh avtomatov (Synthesis of Microprogram Control Automata).
Penza; 1990. 115 с. (in Russ.).

19.	 Vashkevich N.P., Sibiryakov M.A. The formal automatic models of algorithms of processing of cached data. Sovremennye
naukoemkie tekhnologii = Modern High Technologies. 2016;(8-2):205–213 (in Russ.). https://elibrary.ru/whksst

20.	 Lazarev V.G., Piil’ E.I., Turuta E.N. Postroenie programmiruemykh upravlyayushchikh ustroistv (Construction of
Programmable Control Devices). Moscow: Energoatomizdat; 1984. 264 p. (in Russ.).

21.	 Anishev P.A., Achasova S.M., Bandman O.L. Metody parallel’nogo programmirovaniya (Methods of Parallel Programming).
Novosibirsk: Nauka; 1981. 180 р. (in Russ.).

22.	 Yuditskii S.A., Magergut V.Z. Logicheskoe upravlenie diskretnymi protsessami. Modeli, analiz, sintez (Logical Control of
Discrete Processes. Models, Analysis, Synthesis). Moscow: Mashinostroenie; 1987. 176 р. (in Russ.).

23.	 Girault A., Lee E.A. Hierarchical finite state machines with multiple concurrency models. IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst. 1999;18(6):742–760. https://doi.org/10.1109/43.766725

24.	 Stefansson E., Johansson K.H. Hierarchical finite state machines for efficient optimal planning in large-scale systems. In: 2023
European Control Conference (ECC). June, Bucharest, Romania. IEEE; 2023. https://doi.org/10.23919/ECC57647.2023.10178139

25.	 Alur R., Yannakakis M. Model checking of hierarchical state machines. ACM SIGSOFT Software Engineering Notes.
1998;23(6):175–188. http://doi.org/10.1145/503502.503503

26.	 Bolotova L.S. Sistemy iskusstvennogo intellekta. Modeli i tekhnologii, osnovannye na znaniyakh (Artificial Intelligence
Systems. Models and Technologies Based on Knowledge). Moscow: Finansy i statistika; 2012. 664 p. (in Russ.). ISBN 978-
5-279-03530-4

27.	 Thayse A., Gribomont P., Louis J. Logicheskii podkhod k iskusstvennomu intellektu: ot klassicheskoi logiki k logicheskomu
programmirovaniyu (Logical Approach to Artificial Intelligence: From Classical Logic to Logical Programming):
transl. from French. Moscow: Mir; 1990. 429 p. (in Russ.). ISBN 5-03-001636-8

28.	 Ueno H., Ishizuka M. (Eds.). Predstavlenie i ispol’zovanie znanii (Representation and Use of Knowledge): transl. from.
Japan. Moscow: Mir; 1989. 220 p. (in Russ.). ISBN 5-03-000685-0

29.	 Evreinov E.V., Kosarev Yu.G. Odnorodnye universal’nye sistemy vysokoi proizvoditel’nosti (Homogeneous Universal
Systems of High Productivity). Novosibirsk: Nauka; 1966. 308 p. (in Russ.).

30.	 Belov V.V., Vorob’ev E.M., Shatalov V.E. Teoriya grafov (Graph Theory). Moscow: Vysshaya shkola; 1976. 392 p. (in Russ.).
31.	 Polikarpova N.I., Shalyto A.A. Avtomatnoe programmirovanie (Automata Programming): 2nd ed. St. Petersburg: Piter; 2011.

176 p. (in Russ.). ISBN 987-5-4237-0075-1
32.	 Peterson J. Teoriya setei Petri i modelirovanie system (Petri Net Theory and the Modeling of Systems): transl. from Engl.

Moscow: Mir; 1984. 368 p. (in Russ.).
		 [Peterson J.L. Petri Net Theory and the Modeling of Systems. NY: Prentice-Hall; 1981. 310 p.]
33.	 Kotov V.E. Seti Petri (Petri Nets). Moscow: Nauka; 1984. 160 p. (in Russ.).
34.	 Volchikhin V.I., Zinkin S.A. Logic and algebraic models and methods in designing functional architecture of distributed data

storage and processing systems. Izvestiya vuzov. Povolzhskii region. Tekhnicheskie nauki = University Proceedings. Volga
Region. Technical Sciences. 2012;2:3–16 (in Russ.). https://elibrary.ru/pfpgml

35.	 Zinkin S.A. Elements of a new object-oriented technology for modeling and implementing systems and networks for storing
and processing data. Informatsionnye tekhnologii = Information Technologies. 2008;10:20–27 (in Russ.).

36.	 Andon F.I., Doroshenko A.E., Tseitlin G.E., Yatsenko E.A. Algebroalgoritmicheskie modeli i metody parallel’nogo
programmirovaniya (Algebraic Algorithmic Models and Methods of Parallel Programming). Kiev: Akademperiodika; 2007.
634 p. (in Russ.).

37.	 Yushchenko E.L., Tseitlin G.E, Gritsai V.P., Terzyan T.K. Mnogourovnevoe strukturnoe proektirovanie programm.
Teoreticheskie osnovy, instrumentarii (Multilevel structural design of programs. Theoretical foundations, tools). Moscow:
Finansy i statistika; 1989. 208 p. (in Russ.). ISBN 5-279-00233-Х

38.	 Gurevich Y. Abstract State Machines: An Overview of the Project. In: Seipel D., Turull-Torres J.M. (Eds.). Foundations
of Information and Knowledge Systems. Lecture Notes in Computer Science. Springer; 2004. V. 2942. P. 6–13.
https://doi.org/10.1007/978-3-540-24627-5_2

http://doi.org/10.9790/1676-09636167
http://doi.org/10.13140/2.1.1759.7765
https://elibrary.ru/whksst
https://doi.org/10.1109/43.766725
https://doi.org/10.23919/ECC57647.2023.10178139
http://doi.org/10.1145/503502.503503
https://elibrary.ru/pfpgml
https://doi.org/10.1007/978-3-540-24627-5_2

22

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

39.	 Maier D. Teoriya relyatsionnykh baz dannykh (The Theory of Relational databases): transl. from Engl. Moscow: Mir; 1987.
608 p. (in Russ.).

		 [Maier D. The Theory of Relational databases: 1st ed. Computer Sci. Press; 1983. 656 p.]

СПИСОК ЛИТЕРАТУРЫ

	 1.	 Воеводин В.В., Воеводин Вл.В. Параллельные вычисления. СПб.: БХВ-Петербург; 2002. 608 с.
	 2.	 Pleiter D. Supercomputer Architectures: Current State and Future Trends. The AQTIVATE Project, European Union’s

HORIZON MSCA Doctoral Networks Programmer, Grant Agreement No. 101072344. September 2023. 38 p.
	 3.	 Boldyrev A., Ratnikov F., Shevelev A. Approach to Finding a Robust Deep Learning Model. IEEE Access. 2025;13:

102390–102406. https://doi.org/10.1109/ACCESS.2025.3578926, https://doi.org/10.48550/arXiv.2505.17254
	 4.	 Мишенин Р.М., Костенецкий П.С. Моделирование потока задач вычислительного кластера НИУ ВШЭ с исполь-

зованием SLURM Simulator. В сб.: Параллельные вычислительные технологии (ПаВТ’2025): сборник трудов
XIX Всероссийской научной конференции с международным участием. М.: 2025. С. 324.

	 5.	 Promyslov G., Efremov A., Ilyasov Y., Pisarev V., Timofeev A. Efficiency of Machine Learning Tasks on HPC Devices.
В сб.: Параллельные вычислительные технологии (ПаВТ’2025): сборник трудов XIX Всероссийской научной конфе-
ренции с международным участием. М.; 2025. С. 56–81.

	 6.	 Kostenetskiy P.S., Kozyrev V.I., Chulkevich R.A., Raimova A.A. Enhancement of the Data Analysis Subsystem
in the Task-Efficiency Monitoring System HPC TaskMaster for the cHARISMa Supercomputer Complex at
HSE University. In: Sokolinsky L., Zymbler M., Voevodin V., Dongarra J. (Eds.). Parallel Computational
Technologies (PCT’2024). Communications in Computer and Information Science. Springer; 2024. V. 2241. P. 49–64.
https://doi.org/10.1007/978-3-031-73372-7_4

	 7.	 Сластников С.А., Жукова Л.Ф., Семичаснов И.В. Приложение поиска, анализа и прогнозирования данных в социальных
сетях. Информационные технологии и вычислительные системы. 2024;1:97–108. https://doi.org/10.14357/20718632240110

	 8.	 Kirdeev A., Burkin K., Vorobev A., Zbirovskaya E., Lifshits G., Nikolaev K., Zelenskaya E., Donnikov M., Kovalenko L.,
Urvantseva I., Poptsova M. Machine learning models for predicting risks of MACEs for myocardial infarction patients with
different VEGFR2 genotypes. Front. Med. 2024;11:1452239. https://doi.org/10.3389/fmed.2024.1452239

	 9.	 Аль-Хулайди А.А., Садовой Н.Н. Анализ существующих программных пакетов в кластерных системах.
Вестник Донского государственного технического университета (Вестник ДГТУ). 2010;10(3-46):303–310.
https://elibrary.ru/mvsqql

10.	 Ладыгин И.И., Логинов А.В., Филатов А.В., Яньков С.Г. Кластеры на многоядерных процессорах. М.: Издательский
дом МЭИ; 2008. 112 с. ISBN 978-5-383-00142-4. https://elibrary.ru/qmsnap

11.	 Кокоц А.В. Разработка программной модели функционирования кластерной вычислительной системы. Вычислитель-
ные сети. Теория и практика. 2016;2(29):6.1. URL: https://network-journal.mpei.ac.ru/. Дата обращения 02.06.2025.

12.	 Kaur K., Rai A.K. A Comparative Analysis: Grid, Cluster and Cloud Computing. Int. J. Adv. Res. Computer Commun. Eng.
2014;3(3):5730–5734.

13.	 Omer S.M.I., Mustafa A.B.A., Alghali F.A.E. Comparative study between Cluster, Grid, Utility, Cloud and
Autonomic computing. IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE). 2014;9(6):61–67.
http://doi.org/10.9790/1676-09636167

14.	 Kumar R. Comparison between Cloud Computing, Grid Computing, Cluster Computing and Virtualization. Int. J. Mod.
Computer Sci. Appl. (IJMCSA). 2015;3(1):42–47. http://doi.org/10.13140/2.1.1759.7765

15.	 Воеводин Вл.В., Жуматий С.А. Вычислительное дело и кластерные системы. М.: Изд-во МГУ; 2007. 150 с.
ISBN 978-5-211-05440-0

16.	 Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений: пер. с англ. М.: Вильямс;
2015. 528 с. ISBN 978-5-8459-1969-4

17.	 Баранов С.И. Синтез микропрограммных автоматов (Граф-схемы и автоматы). Л.: Энергия; 1979. 231 с.
18.	 Вашкевич Н.П. Синтез микропрограммных управляющих автоматов. Пенза: Изд-во Пенз. политехн. ин-та; 1990.

115 с.
19.	 Вашкевич Н.П., Сибиряков М.А. Формальные автоматные модели алгоритмов обработки кэшируемой информации.

Современные наукоемкие технологии. 2016;(8-2):205–213. https://elibrary.ru/whksst
20.	 Лазарев В.Г., Пийль Е.И., Турута Е.Н. Построение программируемых управляющих устройств. М.: Энергоатомиздат;

1984. 264 с.
21.	 Анишев П.А., Ачасова С.М., Бандман О.Л. Методы параллельного программирования. Новосибирск: Наука; 1981.

180 с.
22.	 Юдицкий С.А., Магергут В.З. Логическое управление дискретными процессами. Модели, анализ, синтез. М.: Маши-

ностроение; 1987. 176 с.
23.	 Girault A., Lee E.A. Hierarchical finite state machines with multiple concurrency models. IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst. 1999;18(6):742–760. https://doi.org/10.1109/43.766725
24.	 Stefansson E., Johansson K.H. Hierarchical finite state machines for efficient optimal planning in large-scale systems.

In: 2023 European Control Conference (ECC). June, Bucharest, Romania. IEEE; 2023. https://doi.org/10.23919/
ECC57647.2023.10178139

https://doi.org/10.1109/ACCESS.2025.3578926
https://doi.org/10.48550/arXiv.2505.17254
https://doi.org/10.1007/978-3-031-73372-7_4
https://doi.org/10.14357/20718632240110
https://doi.org/10.3389/fmed.2024.1452239
https://elibrary.ru/mvsqql
https://elibrary.ru/qmsnap
https://network-journal.mpei.ac.ru/
http://doi.org/10.9790/1676-09636167
http://doi.org/10.13140/2.1.1759.7765
https://elibrary.ru/whksst
https://doi.org/10.1109/43.766725
https://doi.org/10.23919/ECC57647.2023.10178139
https://doi.org/10.23919/ECC57647.2023.10178139

23

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

25.	 Alur R., Yannakakis M. Model checking of hierarchical state machines. ACM SIGSOFT Software Engineering Notes.
1998;23(6):175–188. http://doi.org/10.1145/503502.503503

26.	 Болотова Л.С. Системы искусственного интеллекта. Модели и технологии, основанные на знаниях. М.: Финансы
и статистика; 2012. 664 с. ISBN 978-5-279-03530-4

27.	 Тейз А., Грибомон П., Луи Ж. Логический подход к искусственному интеллекту: от классической логики к логиче-
скому программированию: пер. с франц. М.: Мир; 1990. 429 с. ISBN 5-03-001636-8

28.	 Представление и использование знаний; под ред. Х. Уэно, М. Исидзука. М.: Мир; 1989. 220 с. ISBN 5-03-000685-0
29.	 Евреинов Э.В., Косарев Ю.Г. Однородные универсальные системы высокой производительности. Новосибирск:

Наука, Сибирское отд.; 1966. 308 с.
30.	 Белов В.В., Воробьев Е.М., Шаталов В.Е. Теория графов. М.: Высшая школа; 1976. 392 с.
31.	 Поликарпова Н.И., Шалыто А.А. Автоматное программирование: 2-е изд. СПб.: Питер; 2011. 176 с. ISBN 987-5-

4237-0075-1
32.	 Питерсон Дж. Теория сетей Петри и моделирование систем: пер. с англ. М.: Мир; 1984. 368 с.
33.	 Kотов В.Е. Сети Петри. М.: Наука; 1984. 160 с.
34.	 Волчихин В.И., Зинкин С.А. Логико-алгебраические модели и методы в проектировании функциональной архи-

тектуры распределенных систем хранения и обработки данных. Известия вузов. Поволжский регион. Технические
науки. 2012;2:3–16. https://elibrary.ru/pfpgml

35.	 Зинкин С.А. Элементы новой объектно-ориентированной технологии для моделирования и реализации систем
и сетей хранения и обработки данных. Информационные технологии. 2008;10:20–27.

36.	 Андон Ф.И., Дорошенко А.Е., Цейтлин Г.Е., Яценко Е.А. Алгеброалгоритмические модели и методы параллельного
программирования. Киев: Академпериодика; 2007. 634 c.

37.	 Ющенко Е.Л., Цейтлин Г.Е, Грицай В.П., Терзян Т.К. Многоуровневое структурное проектирование программ.
Теоретические основы, инструментарий. М.: Финансы и статистика; 1989. 208 с. ISBN 5-279-00233-Х

38.	 Gurevich Y. Abstract State Machines: An Overview of the Project. In: Seipel D., Turull-Torres J.M. (Eds.). Foundations
of Information and Knowledge Systems. Lecture Notes in Computer Science. Springer; 2004. V. 2942. P. 6–13.
https://doi.org/10.1007/978-3-540-24627-5_2

39.	 Мейер Д. Теория реляционных баз данных: пер. с англ. М.: Мир; 1987. 608 с.

About the Author

Grigory V. Petushkov, Vice-Rector, MIREA – Russian Technological University (78, Vernadskogo pr., Moscow,
119454 Russia). E-mail: petushkov@mirea.ru. RSCI SPIN-code 4985-4344, https://orcid.org/0009-0006-0801-429X

http://doi.org/10.1145/503502.503503
https://elibrary.ru/pfpgml
https://doi.org/10.1007/978-3-540-24627-5_2
mailto:petushkov@mirea.ru
https://orcid.org/0009-0006-0801-429X

24

Russian Technological Journal. 2025;13(6):7–24

Grigory V. PetushkovOrganization and study of cluster computing systems with functional architecture
determined by executable models. Automata executable models of information processing

Об авторе

Петушков Григорий Валерьевич, проректор, ФГБОУ ВО «МИРЭА – Российский технологический уни-
верситет» (119454, Россия, Москва, пр-т Вернадского, д. 78). E-mail: petushkov@mirea.ru. SPIN-код РИНЦ
4985-4344, https://orcid.org/0009-0006-0801-429X

Translated from Russian into English by Lyudmila O. Bychkova
Edited for English language and spelling by Dr. David Mossop

mailto:petushkov@mirea.ru
https://orcid.org/0009-0006-0801-429X

