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Abstract
Objectives. The study sets out to  develop a  scalable method for detecting multi-vector attacks on  Internet 
of  Things  (IoT) devices. Given the growth of  security threats in  IoT networks, such a  solution must provide high 
accuracy in  detecting attacks with minimal computing costs while taking into account the resource constraints  
of IoT devices.
Methods. The developed hybrid neural network architecture combines convolutional networks for spatial 
dependence analysis and long short-term memory networks or gated recurrent units representing types of recurrent 
neural networks for analyzing time dependencies in network traffic. Model parameters and computational costs are 
reduced by pruning. A blockchain with a proof of voting1 consensus mechanism provides secure data management 
and decentralized verification.
Results. Experiments on  the CIC IoT Dataset 20232 showed the effectiveness of  the model: the accuracy and 
F1 measure were 99.1%. This confirms the ability to detect known and new attacks in real time with high accuracy 
and completeness. Processing time is reduced to 12 ms, while memory usage is reduced to 180 MB, which makes 
the model suitable for devices with limited resources.
Conclusions. The developed model is superior to analogues in terms of accuracy, processing time, and memory 
usage. Hybrid architecture, pruning, and decentralized verification provide effectiveness against multi-vector 
IoT threats.

Keywords: multi-vector attacks, Internet of Things, threat detection, neural networks, blockchain, neuronal pruning, 
cybersecurity, node compromise, consensus, federated learning

1  Proof of Voting is a consensus algorithm in blockchain networks, in which participants confirm transactions and ensure 
network security by voting for blocks or transactions.

2  CIC IoT Dataset 2023. http://cicresearch.ca/IOTDataset/CIC_IOT_Dataset2023/Dataset/. Accessed June 30, 2025.
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Резюме 
Цели. Основная цель работы – разработка масштабируемого метода для выявления многовекторных атак 
на устройства интернета вещей (Internet of Things, IoT). Учитывая рост угроз безопасности в IoT-сетях, реше-
ние должно обеспечивать высокую точность обнаружения атак при минимальных вычислительных затратах 
и с учетом ограничений ресурсов IoT-устройств.
Методы. Для достижения поставленной цели разработана гибридная архитектура нейронных сетей, соче-
тающая сверточные сети для анализа пространственных зависимостей и сети долгой краткосрочной памяти 
или Gated Recurrent Units (управляемые рекуррентные блоки) – один из видов рекуррентных нейронных се-
тей для анализа временных зависимостей в сетевом трафике. Техника обрезки (pruning) сокращает параме-
тры модели и вычислительные затраты. Блокчейн с механизмом консенсуса Proof of Voting3 обеспечивает 
безопасное управление данными и децентрализованную верификацию.
Результаты. Эксперименты на датасете CIC IoT Dataset 20234 показали эффективность модели: точность 
и F1-мера составили 99.1%, что подтверждает способность выявлять известные и новые атаки в реальном 
времени с высокой точностью и полнотой. Время обработки сокращено до 12 мс, использование памяти – 
до 180 МБ, что делает модель пригодной для устройств с ограниченными ресурсами.
Выводы. Разработанная модель превосходит аналоги по  точности, времени обработки и  использованию 
памяти. Гибридная архитектура, обрезка и децентрализованная верификация обеспечивают эффективность 
против многовекторных угроз IoT. Работа открывает перспективы для исследований в кибербезопасности, 
предлагая решения для защиты IoT-сетей от сложных атак.

3  Proof of Voting (алгоритм консенсуса) – это консенсусный алгоритм в блокчейн-сетях, при котором участники под-
тверждают транзакции и обеспечивают безопасность сети путем голосования за блоки или транзакции. [Proof of Voting 
is  a  consensus algorithm in  blockchain networks, in  which participants confirm transactions and ensure network security 
by voting for blocks or transactions.]

4  CIC IoT Dataset 2023. http://cicresearch.ca/IOTDataset/CIC_IOT_Dataset2023/Dataset/. Дата обращения 
30.06.2025. / Accessed June 30, 2025. 
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INTRODUCTION

Due to the development of Internet of Things (IoT) 
technologies networks of IoT devices have become an 
integral part of modern informational infrastructure. 
These devices ensure the interaction of numerous 
systems and platforms in real time to increase the 
effectiveness, convenience, and flexibility of various 
sectors: from smart homes and cities to industrial and 
medical systems. However, IoT devices are often limited 
in computational and energy resources, making them 
sensitive for multi-vector cyberattacks. Thus, their wide 
distribution is associated with an increase in the number 
of potential threats to information security. Among the 
most dangerous attacks are DDoS5, routing attacks, 
SQL6 injections, and other forms of multi-vector threats.

Modern methods of detecting attacks, which 
typically require significant computational resources, 
can prove inefficient under limited conditions of  IoT. 
This leads to the necessity to develop new approaches 
that take into account the limitations of computational 
and informational resources of IoT and simultaneously 
ensure high security level.

In the present work, we propose a scalable model for 
detecting multi-vector attacks, which represents a hybrid 
architecture of Convolutional Neural Network (CNN) and 
Long Short-Term Memory (LSTM) or Gated Recurrent 
Unit  (GRM) neural networks  (CNN  + LSTM/GRU7) 
for analyzing spatiotemporal dependencies of network 
traffic and decentralized data verification. In order to 
reduce computational costs, the model incorporates the 
use of blockchain technologies and neuron pruning. 
The proposed model, which is oriented towards 
working in real time given limited resources, is 
applicable for modern IoT networks. The experimental 
testing of the efficiency of the developed model using 
the CIC  IoT  Dataset  2023  dataset demonstrated its 
superiority over existing solutions.

5  Distributed Denial of Service is a  form of cyberattack 
on web systems in order to disable them or make it difficult for 
ordinary users to access them.

6  Structured Query Language.
7  Gated Recurrent Unit.

1. ANALYSIS OF LITERATURE

Sen et al.  [1] proposed a  mathematical tool for 
modeling cyberattacks on electric grids involving 
game theory and the construction of attack graphs. The 
model is underlaid by the concept of attacker–defender 
dynamics, where the attacker tries to damage the 
operation of an electric grid, while the defender tries to 
prevent the damage using proactive and reactive defense 
measures. The main advantage of the model is taking into 
account the attacker–defender dynamics, which makes 
the model more realistic for use in complex systems. 
The model uses attack graphs to model multilayer and 
multistep attacks, taking into account their complexity 
and diversity. However, the drawbacks of the model 
include the requirement of initial data on the system and 
its vulnerabilities, as well as the requirement of the exact 
evaluation of probabilities of a  successful attack and 
cyber-shutdown cost. This may complicate its practical 
application for limited data systems.

Lysenko et al. [2] proposed a method for detecting 
multi-vector cyberattacks on IoT infrastructure by 
analyzing network traffic and machine learning. 
Lysenko et al. distinguished four key types of signs 
helping in accelerated detection of attacks based on 
data flows, MQTT8, DNS9, and HTTP10. The method 
helps increasing the efficiency of detecting attacks by 
early diagnosis of harmful traffic by analyzing flows 
and deep analyzing packets for exact detection of multi-
vector attacks. This makes this method available for IoT 
networks with high data volume and complex attack 
structure. However, the complexity of the method is due 
to the necessity for an exact determination of a  set of 
signs and their processing, which requires much real-
time computational resources in large IoT networks.

Aguru and Erukala [3] proposed a methodology of 
protecting decentralized IoT networks from multi-vector 
DDoS attacks using blockchain technologies and deep 
learning. A  Prevent-then-Detect two-stage approach 
was proposed, where, at the first stage, an intrusion 

8  Message queuing telemetry transport.
9  Domain name system.
10  HyperText transfer protocol.

Ключевые слова: многовекторные атаки, интернет вещей, выявление угроз, нейронные сети, блокчейн, об-
резка нейронов, кибербезопасность, компрометация узлов, консенсус, федеративное обучение
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prevention system (IPS) works through a  blockchain 
consortium of validators, while at the second stage, an 
intrusion detection system  (IDS) uses deep learning 
models for analyzing network traffic and detecting 
threats. The blockchain ensures security of data transfer 
between network nodes and controls access to resources 
of IoT network using intellectual contracts, which are 
used to determine actions on attack detection and threat 
prevention. The attack prevention system in a blockchain 
consortium uses a consensus algorithm to test suspicious 
traffic. However, the significant computational resources 
required for the operation of blockchain system and deep 
neural networks may limit its operability in devices with 
limited computational possibilities in IoT networks.

Ipole-Adelaiye et al.  [4] proposed a  method for 
detecting multi-vector attacks (MVA) using a multilayer 
perceptron (MLP) approach to analyze network traffic 
by means of machine learning for detecting various 
attack vectors. In particular, network data from packet 
capturing (PCAP) are analyzed to determine anomalous 
patterns in the behavior of network compounds. The 
method uses neural networks for data classification 
and subsequent analysis to increase attack detection 
accuracy. The MLP, which represents the main 
component of the proposed system, consists of an 
input layer, a hidden layer, and an output layer. While 
the MLP  method is suitable for the problems where 
a high detection accuracy is important, faster models 
can be used for networks with limited computational 
resources.

Pakmehr  et al.  [5] analyze various methods for 
detecting DDoS attacks on IoT networks with an 
emphasis on features and challenges that emerge 
when applying these methods to IoT networks. 
The authors reviewed several categories of attack 
detection methods, including signature, anomalous, 
and hybrid approaches. The mathematical tool 
includes algorithms based on machine learning, such 
as Support  Vector  Machine  (SVM), Decision  Trees, 
K-Nearest  Neighbors  (KNN), and Random  Forest. 
These algorithms are used to classify network traffic 
and separate anomalous patterns characteristic of 
DDoS attacks. Although the proposed approaches 
more efficiently cope with high-volume and various 
attacks on IoT devices, their efficiency is limited by the 
complexity of refining the models and the necessity of 
large computational resources.

Alhakami  [6] proposed a  mathematical tool for 
estimating invasion detection methods under Gen V Multi-
Vector Attacks. The method is based on a combination 
of two methods: Fuzzy Analytic Hierarchy Process 
(Fuzzy AHP) and Technique for Order Preference by 
Similarity to Ideal Solution  (TOPSIS). These methods 
allow the estimation of various criteria of efficiency of 
attack detection systems: detection accuracy, adaptivity, 

scaling, effect on resources, detection time, and 
automation. A special attention is made to such aspects 
as adaptation to new threats, the possibility of operating 
in scaling networks, and the minimization of loading 
resources at high automation and rapid response.

Saiyed and Al-Anbagi [7] propose an approach for 
detecting multi-vector DDoS attacks on IoT networks 
using deep ensemble learning with pruning. Saiyed 
and Al-Anbagi presented the Deep Ensemble learning 
with Pruning  (DEEPShield) system, which combines 
the CNN and LSTM networks for analyzing network 
traffic and detecting both high-volume, and low-
volume DDoS attacks. The mathematical tool is based 
on using an ensemble approach, where CNN extracts 
spatial signs from network traffic, and LSTM is used 
to analyze time dependencies. The DEEPShield 
system demonstrates a high (>90%) accuracy of attack 
detection and reduces prediction time in comparison 
with similar models.

Doe et al. [8] describe a hybrid model for analyzing 
threats and classifying attacks in IoT networks using 
deep learning and adaptive optimization algorithm 
Mayfly (LAMOA11). The model tends to the detection 
of routing attacks on IoT networks (sinkhole, wormhole, 
black hole, and Sybil), which significantly reduce 
their productivity and security. The model is based 
on recurrent neural network with long short-term 
memory for processing time series of network traffic 
and classification of attacks with the Mayfly adaptive 
algorithm for optimizing of model hyperparameters. 
The model, which demonstrates a high ability to exact 
classification of various types of attacks, is an efficient 
solution for ensuring security of IoT networks; however, 
its complexity and computational costs may limit its 
use in networks with limited sources, thus requiring its 
further optimization.

Aguru and Erukala  [9] propose a  lightweight 
framework for detecting multi-vector DDoS attacks 
on mobile medicine networks based on IoT using deep 
learning. Here, the focus on accuracy and efficiency 
aligns with the purposes of the proposed model and 
underscores the need for adaptation of detection methods 
to the specificity of mobile IoT devices, which makes 
their operation actual for further research in this area.

Petrenko et al. [10] present a method for detecting 
and counteracting multi-vector threats on decentralized 
IoT systems that emphasizes the necessity of complex 
security strategies. The authors underline the importance 
of integrating various protection methods, including 
machine learning and blockchain technologies.

The works  [11–15] compare approaches to 
common mitigation of attacks on cloud and fuzzy 

11  Learning-based Adaptive Mayfly Optimization 
Algorithm.
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computations, which may improve the scalability of the 
model developed in the work, Leng et al. [11] propose 
methods for improving the scalability and efficiency of 
protection of IoT networks, which is an important aspect 
of ensuring security in conditions of growing number 
of devices and traffic volume. Ali et al.  [12] describe 
a  method for protecting decentralized IoT networks 
from multi-vector DDoS attacks using blockchain 
technologies and deep learning methods. The proposed 
two-stage approach combines prevention and detection 
of attacks, allowing for the efficient control of network 
threats and an improved level of security. Dalal et al. [13] 
propose a  method for detecting multi-vector attacks 
based on MLP. Attention is focused on the importance 
of analysis of network traffic for identifying anomalous 
patterns, which is a  key moment for improving attack 
detection accuracy. Zahid  et  al.  [14] review various 
methods for detecting DDoS attacks on  IoT networks. 
The authors discuss signature-, anomalous-, and 
hybrid approaches in terms of their advantages and 
disadvantages in the context of  IoT. Lungu  et  al.  [15] 
describe a  mathematical tool for estimating invasion 
detection methods in conditions of fifth-generation 
multi-vector attacks. By combining decision-making 
methods, the efficiency of attack detection systems can 
be estimated, including accuracy and adaptivity.

To construct a  simulation model of a  scalable 
method of detection of multi-vector attacks taking into 
account the limitations of computational and information 
resources of IoT devices, the following three most 
suitable models were chosen:
(1)	 Deep Ensemble Learning with Pruning method [7] 

using a  combination of CNN and LSTM for 
analyzing network traffic and pruning to reduce 
computational costs.

(2)	 Threat Analysis model  [8] using  LSTM for 
analyzing routing attacks on IoT networks with 
adaptive optimization of hyperparameters by the 
Mayfly algorithm.

(3)	 Blockchain-based Threat Intelligence Framework 
method [3] combining blockchain technology with 
deep learning for protection of IoT networks from 
multi-vector DDoS attacks.

2. SIMULATION MODEL OF SCALABLE METHOD 
OF DETECTING MULTI-VECTOR ATTACKS 
TAKING INTO ACCOUNT LIMITATIONS OF 
COMPUTATIONAL AND INFORMATIONAL 

RESOURCES OF IoT DEVICES 

The developed model, which should detect multi-
vector attacks with high accuracy while minimizing 
computational costs and taking into account limitations 
inherent in IoT devices, must be suitable for scaling in 
large decentralized IoT networks.

The simulation model is built from the following 
main components:
(1)	 CNN + LSTM/GRU network traffic analysis module.
(2)	 Mayfly algorithm for adaptive optimization of 

hyperparameters.
(3)	 Proof of Voting  (PoV) blockchain-oriented 

consensus mechanism for decentralized verification.
(4)	 Neuron pruning for reducing computational costs.

Let us consider these components in more detail.

2.1. CNN + LSTM/GRU network traffic  
analysis module

The module for network traffic analysis and detection 
of anomalies in data sequence uses a hybrid architecture 
of CNN and LSTM (or GRU to reduce computing costs), 
where:

•	 The CNN processes spatial signs of network traffic. 
Input data are represented as a  multidimensional 
tensor, where each element characterizes network 
packets (e.g., time, size, protocol type). Convolutional 
layers separate spatial patterns in traffic;

•	 The LSTM (or GRU) analyzes time dependencies. 
This helps detect complex multi-vector attacks, 
which manifests themselves on different time range. 
Long Short-Term Memory shares information on the 
previous states of traffic and helps predicting future 
events, which is important for detecting long-term 
attacks, such as DDoS.
The network traffic analysis module in the simulation 

model is based on a hybrid architecture, which combines 
convolutional neural networks for analysis of spatial 
dependencies of network traffic and recurrent neuronal 
networks (LSTM or GRU) for analysis of time dependencies. 
Such a structure efficiently analyzes multi-vector attacks, 
which may reveal themselves through complex anomalies 
in spatial and time dependencies of network traffic.

The convolutional neural network is used to 
separate spatial signs from network traffic represented 
by multidimensional data  (tensor). The input traffic, 
including such parameters as time steps, packet size, 
protocol type, IP  addresses, and other metrics, is 
transformed into a tensor of dimension X ∊ ℝh×w×c, where 
h is the tensor height (number of packets or time steps), 
w is the tensor width (number of signs or characteristics 
per packet), and c  is the number of channels (e.g., this 
may be separation by protocols of data types).

The man convolutional equation is written as

	 , , , , , ,
1 1

,+ +
= =

= +∑ ∑
k kh w

i j k i m j n c m n k k
m n

bY X W  � (1)

where Xi, j, c is the input tensor for position (i, j) in the 
channel c, Wm,  n,  k is the convolutional filter of sizes 
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hk × wk for the channel k, bk is the bias for the channel k, 
and Yi, j, k is the convolutional result in the channel k.

Convolution  (1) is followed by applying an 
activation function for increasing nonlinearity:

Zi, j, k = ReLU(Yi, j, k) = max(0, Yi, j, k).

Here, ReLU  (Rectified Linear Unit) is one of the 
most popular activation functions, which retains only 
positive values.

Convolution network separates spatial patterns 
in network traffic data, such as packet frequency and 
correlation of various traffic parameters. After spatial signs 
are isolated using CNN, they are transferred to LSTM to 
analyze time dependencies. Long Short-Term Memory 
takes into account the time behavior of traffic and helps 
isolating multi-vector attacks, which may show through 
sequential changes in network behavior.

Let us consider the main components of LSTM,
(1)	 Input gates controls the choice of a new input state 

to refresh state of memory. The input gates at time 
t are activated as

	 it = σ(Win ∙ [ht−1, xt] + bin), � (2)

where xt is the input vector at time  t  (spatial signs 
isolated from  CNN); ht−1  is the hidden state at the 
previous time step, Win is the weight matrix for the 
input gate, bin is the bias vector for the input gate, and 
σ is a sigmoid normalizing values on the interval [0, 1].

(2)	 Forgetting gates determine the part of the previous 
state that should be preserved. The function  ft for 
activation of forgetting gates can be written as

	 ft = σ(Wf ∙ [ht−1, xt] + bf),�  (3)

where Wf is the weight matrix for the forgetting 
gate; bf is the bias vector for the forgetting gate.

(3)	 State of memory Ct is refreshed at each time step 
taking into account new information as:

	 Ct = ft Ct−1 + it tanh(Wc ∙ [ht−1, xt] + bc), � (4)

where Ct−1  is the previous state of memory; Ct is 
the new state of memory; ft is the forgetting gates; 
it is the input gates; tanh is the hyperbolic tangent, 
which is a function of activation used for refreshing 
state of memory; Wc is the weight matrix for state of 
memory; [ht−1, xt] is the concatenation of the hidden 
state at the previous step and the current input vector; 
and bc is the bias vector for refreshing state of memory; 
the index c indicates the collection of data to memory.

(4)	 Output gates control the part of state of memory that 
should be used for refreshing the hidden state. The 
output gates are activated as follows:

	 ot = σ(Wo ∙ [ht−1, xt] + bo), � (5)

where ot is the activation function of the output gates, σ is 
the activation sigmoid, Wo is the weight matrix for the 
output gates, and bo is the bias vector for the output gates.
The new hidden state ht is calculated as

	 ht = ot tanh(Ct), � (6)

where ht is the hidden state at time t, which is used 
for final classification of network traffic; and Ct is 
the current state of memory.
Instead of LSTM, GRU can be used, which is 

modification that uses less computational costs. 
GRU combines forgotten and input gates into a  single 
refreshing gate, which reduces computational costs and 
improves model operation under limited resources.

Let us consider the main components of GRU.
(1)	 Refreshing gates:

	 zt = σ(Wz ∙ [ht−1, xt] + bz). � (7)

Here, zt is the activation of the refreshing gates, which 
controls how strongly the current state affects the 
previous one; the index z shows a refreshing gate (zero).

(2)	 Removal gates:

	 rt = σ(Wr ∙ [ht−1, xt] + br). � (8)

Here, rt is the activation of the removal gates, which 
controls how strongly the previous state should be 
forgotten; the index r indicates the reset gate.

(3)	 Refreshing of the hidden state:

	 ht = (1 – zt) ht−1 + zt tanh(Wh[rtht−1, xt] + bh), � (9)

where ht is the refreshed hidden state at time t, and 
Wh is the weight matrix for refreshing the hidden 
state; the index h displays the gate of hidden state.
Recurrent neural network GRU uses fewer 

parameters than LSTM, which makes it more suitable for 
problems requiring smaller computational costs, such as 
operation under limited resources of IoT devices.

After processing of the CNN and LSTM/GRU 
data, the model uses a  fully connected layer for final 
classification of traffic. This layer calculates the 
probabilities that data belongs to one of the classes, e.g., 
normal traffic or attack:

	 Pattack = Softmax(WouthT + bout), � (10)

where Pattack is the probability that the input traffic is 
attack, Wout is the outer layer weights, hT is the hidden 
state at the last time step, bout is the outer layer bias, and 
Softmax normalizes the outer probability values.
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The main variables of the model are the input tensor 
X ∊  ℝh×w×c of network traffic; the weight matrices  W 
of layers  (CNN, LSTM/GRU); the bias vectors b  of 
layers (CNN, LSTM/GRU); the input (it), forgotten (ft), and 
output (ot) gates to LSTM, respectively; the refreshing (zt) 
and removal (rt) gates to GRU, respectively; the hidden 
state ht at time t; the state of memory Ct in LSTM; and the 
probability Pattack that the traffic is attacking.

The network traffic analysis module based on 
a  hybrid architecture of CNN  +  LSTM  (or  GRU) 
combines spatial and time dependencies of network 
data. Such architecture efficiently detects multi-vector 
attacks on IoT networks, which is particularly important 
for systems with limited computational resources.

The model operates as follows.
(1)	 The input traffic is transformed into 

a  multidimensional tensor, which enters 
convolutional layers for isolating signs.

(2)	 The isolated signs enter the LSTM/GRU for 
analyzing time dependencies.

(3)	 The model classifies the traffic as normal or attacking.

2.2. Adaptive optimization of hyperparameters 
using the Mayfly adaptive algorithm

To improve the efficiency of the model and tune it to 
specific network conditions (e.g., data volume or type of 
attacks), we use the Mayfly adaptive algorithm [8]. The 
Mayfly algorithm helps to automatically find the optimal 
hyperparameters of the model, such as:

•	 number of layers in CNN and LSTM;
•	 number of filters and neurons in each layer;
•	 model learning rate.

The Mayfly adaptive algorithm accelerates 
model tuning and ensures its optimal productivity 
without necessity of manual tuning. The algorithm 
uses evolutionary methods for searching for optimal 
parameters and is adapted during model learning.

The main steps of the Mayfly adaptive algorithm are 
the following:

1.	Population initialization.
2.	Males and females: separation into two groups with 

different search strategies.
3.	Global and local search: search for the best solutions 

by males and females.
4.	Evolution and refreshment of rates and positions.
5.	Rendezvous and reproduction.

The main variables and parameters of the algorithm 
are the following.

N—number of individuals in the population;
m
ix —position of male i  in solution 

space (hyperparameter value);
f
ix —position of female I;
m
iv —male velocity;
f
iv —female velocity;

α,  β,  γ—male and female motion control 
coefficients  (inertia, acceleration, and interaction, 
respectively);

gbest—global best solution found by all males and 
females;

pbest—personal best solution found by male or female;
λ—attraction coefficient for rendezvous of males 

and females;
∊—random bias affecting mutation in search.

2.2.1. Population initialization
The Mayfly algorithm begins with random 

initialization of the initial population of males and 
females  (hyperparameters) in search space. Each male 
or female is a model hyperparameter vector

xi = [xi1, xi2, …, xid],

where d is the hyperparameter space dimensionality (e.g., 
number of layers or neurons, training rate, etc.).

The position xi of each male or female in 
hyperparameter space is initialized randomly:

m f
min max(0), (0) Uniform( , ),i ix x x x

where xmin and xmax are the hyperparameter space 
boundaries, and Uniform(xmin, xmax) is the function of 
random sampling from the interval [xmin, xmax].

2.2.2. Refreshment of male velocity and position
Males find solutions in global space, refreshing 

their position based on personal best solution pbest and 
global best solution gbest. The male position refreshment 
velocity is calculated as:

m m m
1 1 best,

m
2 2 best,

( 1) ( ) ( ( ))

( ( )),

+ = α + β - +

+ β -

i i i i

i i

t t r p t

r g t

v v x

x

where α  is the inertia coefficient  (which controls 
how strongly the velocity of the previous step affects 
the current position); β1  and β2  are the acceleration 
coefficients, which control the effect of the personal and 
global bets solutions on the velocity refreshment; and 
r1  and r2 ∼  Uniform(0,  1) are random values, which 
ensure random bias in search.

The position of each male is refreshed taking into 
account its new velocity:

m m m( 1) ( ) ( 1).+ = + +i i it t tx x v

2.2.3. Refreshment of female  
velocity and position

Females perform local search, refreshing their 
positions based on the distance to males. The female 
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position refreshment velocity is calculated taking into 
account the interaction with males:

f m f( 1) ( ( ) ( )) ,+ = l - +∈i i it x t x tv

where λ  is the attraction coefficient between males 
and females, and ∊ is a random deviation for ensuring 
diversity of solutions.

The positions of females is refreshed as follows:

f f f( 1) ( ) ( 1).+ = + +i i it t tx x v

2.2.4. Evaluation of solutions
Each male or female is evaluated using 

a  fitness  function, which may be related to model, 
accuracy, learning time, model complexity, and other 
parameters. The fitness function F(xi) for each male or 
female is calculated as:

F(xi) = Evaluation Model(xi),

where xi are the hyperparameters represented by 
male or female, and Evaluation Model is a  function 
estimating the model productivity at the given 
hyperparameters.

2.2.5. Rendezvous and reproduction

After the velocities and positions are refreshed, 
males and females make a  rendezvous, which models 
reproduction in the algorithm. When males and females 
become close enough, there are crossing over and 
mutation:

•	 crossing over transforms part of genetic 
information  (hyperparameters) from males to 
females:

m f
new (1 ) ,= l + - li ix x x

where xnew is a  new value  (position) of male or 
female as acquired by crossing over, m

ix  is the 
current position of male i, f

ix  is the current position 
of female i, and λ is a coefficient determining the 
weight of influence of female in the new 
state (λ typically ranges from 0 to 1).

•	 mutation randomly changes some parameters with 
probability pmut.

2.2.6. Completion criterion

The Mayfly algorithm performs until one of 
the following conditions is used: the maximum 
number  Tmax of iterations has reached, or the fitting 
function is not improved for several consecutive 
operations.

2.3. Decentralized verification mechanism  
based on blockchain technology

The security and reliability of the system 
under decentralized IoT networks are ensured by 
PoV blockchain-oriented consensus mechanism [3]. The 
main functions of this component are the following:

•	 decentralized verification of attack data, by which 
several network nodes analyze network traffic and send 
information on possible attacks to distributed ledger;

•	 validation of blocks occurs through polling of 
validating nodes: if more than 50% nodes support 
attack, the information about it is written in the 
distributed ledger, and dangerous IP addresses are 
blocked through action modules.
The decentralized verification module uses 

blockchain technologies for ensuring data security and 
preventing attacks in IoT networks. This module operates 
based on PoV consensus mechanism, which allows 
network nodes  (validators) to vote for data blocks on 
traffic, attacks, or state of network. Blockchain ensures 
protection from deception of data, decentralized storage, 
and automatic performance of such actions as block of 
harmful IP addresses through action modules.

The main elements and variables are the following.
B—data block containing information on network 

traffic, detected attacks, or refreshing states of network;
N—number of nodes (validators) in blockchain network;
Vi—voice of validator i for acceptance or rejection 

of block;
Pvalid—probability that the block is valid;
TB—block validation time;
AM—Action  Module, which contains data on 

attacks and blocks of IP addresses.
This subsection presents key steps of processing 

network traffic and ensuring security in blockchain 
system. These steps describe how network nodes interact 
for detecting anomalies, data verification, and automatic 
blocking of suspicious IP addresses. Every step plays an 
important rope in creating a reliable and efficient system 
of protecting from cyberattacks, ensuring data integrity 
and rapid response to threats.

The steps of processing network traffic and ensuring 
security in blockchain system are the following:

Step 1. Formation of data block.
Each blockchain network node processes the 

entering network traffic and, if there is an anomaly or 
suspicious activity (e.g., multi-vector attack), forms data 
block B. This block includes the following elements:

B = {Block ID, Data, Previous Hash, Timestamp, 
Signature},

where Block ID is the unique block identifier, Data 
is the information on traffic and possible attacks  
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(e.g., IP addresses, type of attack, and timestamps), 
Previous Hash is the hash of the previous block in 
blockchain for maintaining continuous chain, Timestamp 
is the block formation time, and Signature is the digital 
signature of the node that formed the block.

Step 2. PoV consensus mechanism.
After the block is formed, it is transferred to other 

network nodes for verification using the PoV consensus 
mechanism.

The block is validated by voting of network nodes in 
the following order:

•	 each node analyzes the data block B, tests its integrity 
and reliability, and then sends its voice Vi  (voting 
may be binary: Vi = 1 for acceptance of block and 
Vi = 0 for rejection of block);

•	 the probability that the block is valid is calculated 
as

1
valid .==

∑
N

i
i

V
P

N

If Pvalid  ≥  0.5  (most nodes support the block), 
then the block is considered valid and is added to the 
distributed ledger, and if Pvalid < 0.5, then the block is 
rejected.

Step 3. Refreshing of distributed ledger
After reaching consensus and supporting block B, it 

is added to the distributed ledger. Each item in the 
distributed ledger is related to the previous block through 
the Previous Hash . Which ensures continuous and 
invariable data chain. A  new block is added to the 
distributed ledger:

Bnew = {Hash(Bprev), Datanew, Timestampnew, 
Signaturenew},

where Hash(Bprev) is the hash of the previous block, 
which guarantees the integrity of the entire chain.

Step 4. Using action modules for automatic blocking 
of IP addresses.

Blockchain system uses action modules for automatic 
actions when detecting attack. Action modules Action 
modules automatically block IP addresses, send notice, 
and refresh blacklists in network. The structure of action 
module can have the following form:

AM = {Source IP (SIP), Destination IP (DIP), 
Signature, Blacklisted IP, Attack Label},

where Source IP  (SIP) is the IP address, from which 
traffic enters; Destination IP  (DIP) is the IP  address of 
target device; Signature is the digital signature of data for 
information authentication; Blacklisted IP is the list of 
IP addresses, which were blocked after detecting attack; 

and Attack Label is the attack label, which contains type 
of attack (e.g., DDoS, SQL injection, multi-vector attack).

Step 5. IP address blocking.
Once the data block on attack is confirmed and 

added to blockchain, action module automatically blocks 
harmful IP addresses in network. For example, if DDoS 
traffic is detected, then the IP  address of the SIP  
attacking device is added to the Blacklisted IP  blacklist 
through action module

AM(SIP) = Blacklisted IP.

These data are refreshed at every network node 
through distributed blockchain structure, which 
guarantees the consistency of actions of all participants.

Step 6. Block validation time.
For each block B, the block validation time TB is 

calculated, which depends on the time tvote of voting of all 
nodes, the time tcontract of performance of all action modules, 
and the time ttransmit of block transmission between nodes:

TB = tvote + tcontract + ttransmit.

The optimization of block validation time is critical 
for IoT networks with limited resources and high data 
exchange rate.

2.4. Pruning

Pruning is used to reduce computational costs and 
optimize model operation at low-power IoT  devices. 
After model learning, minor neurons and their 
connections are pruned to reduce model volume without 
significant impairment of its accuracy.

Pruning is performed as follows:
•	 after learning of neural network, the weights of its 

connections are analyzed. If the weights are below 
a given level, then the connections are pruned;

•	 the model is restarted with a  reduced number 
of neurons and parameters, which reduces 
its computational complexity and memory 
requirements.
The main idea is to prune unnecessary or minor 

neurons or change weights after model learning, 
insignificantly reducing its productivity.

The main elements and variables are the following:
W—weight matrix of neural network;
b—bias vector of neurons;
f(W)—activation function for network weights;
θ—threshold for weight pruning;
M—masking matrix for weight pruning;
ntotal—total number of parameters (weights) in 

neural network;
npruned—number of pruned weights;
p—fraction of pruned weights or neurons.
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2.4.1. Determination of significance  
of weights and neurons

After the neural network is learned, it is necessary 
to determine, which weights W in neural network affect 
least on output values and can be pruned. This is done 
by calculating the significance of each weight Wi, j. As 
a measure of significance, the metric of absolute value of 
weight can be used, in which the smaller the weight, the 
less significant this weight for neuron activation:

	 Significance(Wi, j) = |Wi, j|. � (11)

If the weight is close to zero, then its influence on 
network output is minimal, and such a weight can be pruned.

2.4.2. Pruning threshold
To determine, which weights should be pruned, 

threshold  θ is introduced. The weights the absolute 
value of which is smaller than θ are considered minor 
and removed (equated to zero 0):

	 Wi, j = 0 if |Wi, j| < θ. � (12)

The threshold θ is chosen empirically or optimized 
during experiments. This threshold can be static or 
dynamic, adapted by analyzing model structure.

2.4.3. Masking matrix
Lest weight pruning affect neurons that have 

a significant effect on the output values of the model and 
its productivity, masking matrix M is used, denoting which 
weights should be retained, and which should be zeroed:

	
,

,
,

1, if | | ,

0, if | | .

≥ q=  < q

i j
i j

i j

W
M

W
 � (13)

Pruned masking matrix:

	 Wpruned = W ⊙ M, � (14)

where ⊙ is the elementwise product of the weight 
matrix W and the masking matrix M. This guarantees 
that only significant weights participate in computations, 
and minor weights are pruned.

2.4.4. Estimation of pruned weight fraction
The fraction of pruned weights or neurons is 

calculated as

	 pruned

total
,=

n
p

n
 � (15)

where npruned is the number of pruned weights, i.e., 
weights for which |Wi, j| < θ; and ntotal is the total number 
of weights in the model.

2.4.5. Iterative pruning
Simple pruning threshold may be insufficiently 

efficient for all network layers, especially for deep 
models with numerous layers. Therefore, iterative 
pruning may be used: weights are pruned not at once but 
stepwise, with a gradual increase in threshold θ.

At each iteration, the weights are recalculated using 
the masking matrix:

	 Wnew = Wold ⊙ M. � (16)

Then the network is relearned on new data to restore 
its accuracy after pruning. This process is repeated 
several times until the pruned weight fraction reaches 
the desired level p.

2.4.6. The main steps of the developed simulation 
model and metric for estimating the model quality 

after weight pruning
The main steps of the model operation are the following:

(1)	 traffic analysis using CNN  +  LSTM for detecting 
spatiotemporal signs and identifying anomalies;

(2)	 model optimization: the Mayfly algorithm 
automatically tunes model hyperparameters 
depending on the conditions of network and data, 
which ensures its adaptability;

(3)	 suspicious IP addresses and traffic are verified and 
blocked through blockchain consortium. If the 
attack on IP addresses is confirmed, they are blocked 
through action modules;

(4)	 neuron pruning: after the initial learning and 
verification of the model, neurons are pruned 
to reduce computational complexity and model 
adaptation to resources of IoT devices.
After pruning, it is important to estimate the changes 

in model productivity and resource intensity. The main 
metrics of model quality after weight pruning are the 
following:
(1)	 the fraction of accurate predictions among the 

total amount of predictions  (accuracy of correct 
predictions):

	 1
TP TNAccuracy ,

TP +TN + FP + FN
+

= =E  � (17)

where TP is the number of true positive 
predictions  (correct predictions of attacks), TN is 
the number of true negative predictions  (correct 
predictions of normal traffic), FP is the number of 
false positive predictions (false alerts), and FN is the 
number of false negative predictions (lost attacks);

(2)	 recall:

	 2
TPRecall ,

TP + FN
= =E  � (18)
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which determines the model ability to detect all 
attacks in a sample;

(3)	 precision  (fraction of true positive predictions 
among all positive predictions  (accuracy of true 
positive predictions)):

	 3
TPPrecision ,

TP + FP
= =E  � (19)

which determined how much model predictions of 
positive classes are correct;

(4)	 F1 metric:

	 2 3
4

2 3
2 ,=

+
E E

E
E E

 � (20)

which is a  harmonic mean between recall and 
precision;

(5)	 time of data processing and performing model 
predictions:

	 E5 = Tpruned = Toriginal(1 – p), � (21)

where Tpruned is the computational time after 
pruning, Toriginal is the computational time by the 
initial model, and p is the fraction of pruned neurons;

(6)	 memory usage (reduction of memory usage after 
weight pruning):

	 E6 = Mpruned = Moriginal(1 – p), � (22)

where Mpruned is the memory required for storing 
pruned model, and Moriginal is the memory necessary 
for storing the initial model.

3. IMPLEMENTATION AND EXPERIMENT

3.1. Design of experiment

In this section, we experimentally tested the developed 
simulation model of detecting multi-vector attacks 
taking into account the limitations of computational and 
informational resources of IoT devices.

The experiment uses CIC  IoT Dataset  2023, which 
contains data of network traffics, both normal, and 
attacking, with various characteristics and signs, such as:

•	 IP addresses (Source/Destination);
•	 ports (Source/Destination);
•	 connection time;
•	 packet size;
•	 protocols (TCP12, UDP13, HTTP, DNS);
•	 attack mark (e.g., DDoS, SQL injection, Brute 

Force).

12  Transmission Control Protocol.
13  User Datagram Protocol.

The dataset is divided into several classes:
•	 normal traffic;
•	 attacking traffic (various types of attacks).

The experiment compares the results of the developed 
simulation model with several similar methods used to 
detect attacks on IoT networks.

The CIC IoT Dataset 2023  data were normalized 
using Min-Max Scaling to reduce all signs to the 
range  [0,  1]. Outliers were removed by Interquartile 
Range (IQR) method, and new signs were generated by 
aggregation of time characteristics of traffic (e.g., mean 
number of packets in 10 s).

The testing was performed on a  workstation 
based on Macbook  Pro notebook  (Apple Inc.,  USA) 
with M2  Pro processor  (includes 12  processor 
cores  (8  performance cores and 4  efficiency cores), 
19 graphics engines, and 16-core neural coprocessor) 
and16-GB random access memory with a  throughput 
efficiency of about 200 GB/s.

3.2. Structure of experiment

The experiment was performed in several steps:
(1)	 Data preparation, at which the CIC IoT Dataset 2023 

data are divided into learning and testing samplings 
in the ratio 70 : 30. Then, the data are preliminarily 
processed: signs are normalized, outliers are 
removed, and new signs are generated (if necessary).

(2)	 Model learning, at which the proposed model 
is learned based on the hydride architecture 
CNN + LSTM/GRU using neuron pruning to reduce 
computational costs.
The model hyperparameters are optimized using the 

Mayfly algorithm.
For comparison, other models are also learned, such 

as Random Forest, SVM, Deep Learning (MLP).
The processing time of a single data packet is found as 

the sum of convolution time (1), LSTM/GRU processing 
time (2)–(9), and classification time (10). Owing to neuron 
pruning  (11)–(16), the model significantly reduces the 
number of parameters, which decreases the computational 
costs and improves productivity on devices with limited 
resources. This makes it possible to efficiently use the 
model under real conditions, such as real-time monitoring 
systems, where fast response and minimum memory 
consumption are important. The quality of the simulation 
model is estimated using metrics (17)–(22).

3.3. Analysis of the obtained results

The efficiency of the proposed model was estimated in 
experimental studies. Table estimates the efficiency using 
evaluation metrics (17)–(22) of various models, including 
the proposed model based on the CNN + LSTM/GRU 
hybrid architecture using neuron pruning.
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Table. Experimental results

Model
Evaluation metrics

E1, % E2, % E3, % E4, % E5, ms E6, MB

Random Forest 96.5 95.7 97.1 96.4 35 220

SVM 94.3 92.6 94.5 93.5 50 250

Deep Learning (MLP) 97.8 97.2 98.0 97.6 20 210

Simulation model CNN + LSTM/GRU 99.1 99.3 98.9 99.1 12 180

Figure 1  compares the results of operation of 
the proposed simulation model and its analogs 
in accordance with evaluation metrics  (17)–(20). 
Figure  1  shows that the CNN  +  LSTM/GRU model 
significantly exceeds the other models in all presented 
metrics, which confirms its high efficiency in detecting 
multi-vector attacks.

Figure 2  compares the results of operation of the 
proposed simulation model and its analogs in accordance 
with evaluation metrics  E5  (21). Figure  2  shows that 
the model CNN  +  LSTM/GRU has the minimum 
data processing time and the minimum prediction 

performance time (12 ms), which makes it particularly 
suitable for real-time use, whereas the other models 
require much more time.

Figure 3  compares the results of operation of the 
proposed simulation model and its analogs in accordance 
with quality metric E6  (22). Figure 5  shows that the 
model CNN  +  LSTM/GRU requires the minimum 
memory volume (180 MB) for processing the input data 
of 1 million examples with 10 signs, which makes it more 
efficient for using on devices with limited computational 
resources in comparison with the other models, such as 
Random Forest and SVM.

Evaluation metrics
 Random Forest
 SVM

 Deep Learning (MLP)
 CNN + LSTM/GRU

100

98

96
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92

90

88

%

E1 E2 E3 E4

Fig. 1. Comparison of the results of operation of the developed simulation model CNN + LSTM/GRU  
and its analogues in accordance with metrics E1 (17) – E4 (20)
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Fig. 2. Comparison of the results of operation of the developed simulation model CNN + LSTM/GRU  
and its analogues in accordance with metric E5 (21)
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Fig. 3. Comparison of the results of operation of the developed simulation model CNN + LSTM/GRU  
and its analogues in accordance with metric E6 (22)

The performed experiment confirms the following:
(1)	 The developed simulation model attained high 

accuracy of detecting attacks at a  level of  99.1%, 
which suggests its ability to efficiently identify 
both known and new types of attacks in real time. 
Thus, the proposed architecture based on the 
CNN + LSTM/GRU hybrid model can be successfully 
applied in the context of analyzing network traffic.

(2)	 The F1  metric of the developed simulation model 
is  99.1%, which indicates high balance between 
precision  (19) and recall  (18). This means that the 
model not only accurately identifies attacks, but also 
minimizes the number of false alarms and miss.

(3)	 The request processing time in the proposed 
simulation model at hardware resources stated in 
3.1 of this work is reduced to 12 ms, making this 
model particularly useful for systems requiring fast 
response, such as real-time monitoring systems. 
This represents a  significant advantage over the 
other models, which require more processing time.

(4)	 The developed simulation model uses only 180 MB 
memory, making it suitable for implementing on 
devices with limited computational resources. This 
is particularly important for IoT devices, which are 
often limited in memory and computational power.

(5)	 Neuron pruning significantly reduced the number of 
model parameters from 1.5 million to 300 thousand, 
which, in turn, decreased computational costs by 80% 
and improved productivity. This confirms that model 
optimization approaches contribute significantly to its 
successful use under limited resources.

CONCLUSIONS

In this work, we have proposed a simulation model 
of a scalable method for detecting multi-vector attacks 
on IoT devices that takes into account the limitations of 
computational and informational resources. The creation 
of an efficient solution capable of detecting attacks with 
high accuracy is a  key objective given the growing 
security threats in IoT.

The proposed model is based on a hybrid architecture 
of neural networks that combines convolutional neural 
networks CNN for analyzing spatial dependencies and 
long short-term memory networks LSTM for analyzing 
time dependencies of network traffic. An important aspect 
is pruning, which significantly reduces the number of 
model parameters to decrease computational costs. The 
use of blockchain technologies with a  PoV  consensus 
mechanism ensures data security and decentralized 
verification, which is critically important for protecting 
IoT networks from multi-vector attacks.

The experimental testing using the CIC IoT Dataset 2023 
dataset demonstrated the high efficiency of the proposed 
model. The achieved attack detection accuracy 99.1% 
confirms its ability to exactly identify both known and 
new types of attacks in real time. The F1 metric of 99.1% 
indicates a balance between precision and recall, which is 
critically important for cybersecurity systems in which both 
false alarms and unidentified attacks should be minimized. 
In addition to high accuracy, the request processing time 
was reduced to 12 ms. This allows the model to function 
efficiently under rapid response conditions such as real-
time monitoring systems. Memory use was also optimized 
to only 180 MB, which makes it suitable for devices with 
limited computational resources.

Thus, the developed simulation model exceeds the 
existing solutions in key metrics, such as precision, 
processing time, and memory use. The high efficiency 
of the model during multi-vector threats to  IoT is 
ensured by its hybrid architecture, neuron pruning, and 
decentralized verification.

This work opens new horizons for further research 
in cybersecurity that will lead to efficient solutions for 
protecting IoT networks from complex cyberthreats. 
Future studies should aim to integrate additional 
machine learning and deep learning methods for 
increasing the accuracy and stability of the model 
to new types of attacks. It is also worth considering 
the possibility of optimizing algorithms to reduce 
computational costs and increase data processing rates. 
Under current conditions of increased device numbers 
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and traffic volumes, it becomes crucial to continue to 
improve the scalability and stability of blockchain-
oriented solutions.
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