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Abstract

Objectives. The study sets out to develop a scalable method for detecting multi-vector attacks on Internet
of Things (loT) devices. Given the growth of security threats in 10T networks, such a solution must provide high
accuracy in detecting attacks with minimal computing costs while taking into account the resource constraints
of loT devices.

Methods. The developed hybrid neural network architecture combines convolutional networks for spatial
dependence analysis and long short-term memory networks or gated recurrent units representing types of recurrent
neural networks for analyzing time dependencies in network traffic. Model parameters and computational costs are
reduced by pruning. A blockchain with a proof of voting' consensus mechanism provides secure data management
and decentralized verification.

Results. Experiments on the CIC IoT Dataset 20232 showed the effectiveness of the model: the accuracy and
F1 measure were 99.1%. This confirms the ability to detect known and new attacks in real time with high accuracy
and completeness. Processing time is reduced to 12 ms, while memory usage is reduced to 180 MB, which makes
the model suitable for devices with limited resources.

Conclusions. The developed model is superior to analogues in terms of accuracy, processing time, and memory
usage. Hybrid architecture, pruning, and decentralized verification provide effectiveness against multi-vector
loT threats.

Keywords: multi-vector attacks, Internet of Things, threat detection, neural networks, blockchain, neuronal pruning,
cybersecurity, node compromise, consensus, federated learning

T Proof of Voting is a consensus algorithm in blockchain networks, in which participants confirm transactions and ensure
network security by voting for blocks or transactions.
2 CIC loT Dataset 2023. http://cicresearch.ca/IOTDataset/CIC_|IOT_Dataset2023/Dataset/. Accessed June 30, 2025.
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Pe3iome

Llenu. OcHoBHas uenb paboTthl — pa3dpaboTka MaclwTabnpyeMoro MetToaa A5l BbiSIBIEHMS MHOTOBEKTOPHbIX aTak
Ha yCcTpolicTBa nHTepHeTa BeLlel (Internet of Things, 10T). YuuTbiBas pocT yrpo3 6e3onacHocTu B loT-ceTax, peLue-
HVe O0JKHO 00ecneymBaTh BbICOKYIO TOHHOCTb OOHAPYXXEHMS aTak NPy MUHUMalbHbIX BbIYUCUTENbHbBIX 3aTpaTax
M C y4eTOM OrpaHmnyeHunin pecypcos loT-yCTpOnCTB.

MeTopabl. [1ns 0OCTMXEHUS MOCTaBAEHHOM Lenn padpaboTaHa rmbpmnaHas apxmTekTypa HeMPOHHbIX CEeTen, co4ve-
Tallasa CBEPTOYHbIE CETU /1 aHANN3a NPOCTPAHCTBEHHbIX 3aBUCUMOCTEN U CeTU LOJIFON KPaTKOCPOYHOW NaMsATH
wnu Gated Recurrent Units (ynpaBnsiemble pekyppeHTHble 6/10K1) — OAMH U3 BUOOB PEKYPPEHTHBLIX HEMPOHHBIX Ce-
Tel ons aHanM3a BPEMEHHbIX 3aBUCUMOCTEN B ceTeBOM Tpaduke. TexHrka obpesku (pruning) cokpallaeTt napame-
TPbl MOOENN U BbIMUCIUTENbHbIE 3aTpaThl. BnokyeliH ¢ MexaHn3MoMm koHceHcyca Proof of Voting® o6ecneunBaeT
©6e3onacHoe ynpaBneHne AaHHbIMU U OELLEHTPaNIM30BaHHYO BEpPUPUKALNIO.

PesynbTaTtbl. OkcnepumeHTbl Ha gatacete CIC loT Dataset 2023* nokasanun apdpekTMBHOCTb MOAENIN: TOYHOCTb
n F1-mepa coctaBunm 99.1%, 4TO NOATBEPXAAET CMOCOOHOCTb BbIABNATL U3BBECTHLIE M HOBbIE aTakn B PEasIbHOM
BPEMEHU C BbICOKOI TOYHOCTbLIO 1 MOJSIHOTON. Bpemsa 06paboTku cokpalleHo Ao 12 Mc, UCnosib30BaHNEe NamMaTn —
0o 180 MB, uto menaeT MoZenb NPUrOAHOWN AN YCTPONCTB C OrPaHNYEHHbIMY PECYpPCaMU.

BbiBoabl. Pa3paboTaHHass Moaenb NPEBOCXOANUT aHANOMM MO TOYHOCTU, BPEMEHMN 06PabOTKM U UCMOJIb30BAHUIO
namaTn. MbpunaHas apxuTekTypa, odpeska 1 AeueHTpanM3oBaHHas Bepudukaumsa obecnedmpatot apPekTMBHOCTb
NPOTMB MHOTOBEKTOPHbIX Yrpo3 loT. PaboTa OTKpbIBAET NEPCNEKTUBLI A1 UCCefoBaHMn B knbepbe3onacHoCTH,
npegnaras peweHns anga 3awmtbl loT-ceTen OT CNOXHbIX aTak.

3 Proof of Voting (anroputm KOHCEHCYCa) — 3TO KOHCEHCYCHBbIN aNrOPUTM B BIIOKYEH-CETAX, MPU KOTOPOM Y4aCTHUKM NOJ-

TBEPXAAOT TpaH3akLmm 1 obecneunBatoT 6€30MacHOCTbL CETU NYTEM FrofI0COBaHMs 3a 6,10kM nnm TpaHsakummu. [Proof of Voting
is a consensus algorithm in blockchain networks, in which participants confirm transactions and ensure network security
by voting for blocks or transactions.]

4CIC loT Dataset 2023. http://cicresearch.ca/lIOTDataset/CIC_IOT Dataset2023/Dataset/. [data obpaLieHns

30.06.2025. / Accessed June 30, 2025.
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Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of loT devices

KnioueBble crioBa: MHOrOBEKTOPHbIE aTaku, UHTEPHET BELLIEN, BbIIBNIEHME YrPO3, HEMPOHHbIE CeTU, B/1I0K4YenH, 00-
peska HelpoHOoB, Knbep6e30nacHOCTb, KOMNPOMEeTauUus y3/10B, KOHCEHCYC, dpeaepaTnBHoe 0byyeHme

Ang uutupoBaHusa: MeTtpeHko B.U., Tebyesa ®.6., Oryp M.I'., Jluney '.U., Mouanoe B.I1. iM1TaunoHHas moaenb
MacLTabupyemoro MeToaa BbISIBIEHMS MHOTOBEKTOPHbIX aTak C Y4eTOM OFPaHUYEHUNM BbIYUCIUTENBbHbIX U MHDOPMa-
LIMOHHbIX pecypcoB loT-ycTpoinicTB. Russian Technological Journal. 2025;13(5):25-40. https://doi.org/10.32362/2500-
316X-2025-13-5-25-40, https://www.elibrary.ru/JKQMQM

MpospayHocTb hMHAHCOBOM AeATEeNbHOCTU: ABTOPbI HE UMEIOT PUHAHCOBOM 3aMHTEPECOBAHHOCTM B MPEACTaB/EH-

HbIX MaTepuanax niam MetToaax.

ABTOpbI 329BNASI0OT 06 OTCYTCTBUN KOHDINKTA MHTEPECOB.

INTRODUCTION

Due to the development of Internet of Things (IoT)
technologies networks of IoT devices have become an
integral part of modern informational infrastructure.
These devices ensure the interaction of numerous
systems and platforms in real time to increase the
effectiveness, convenience, and flexibility of various
sectors: from smart homes and cities to industrial and
medical systems. However, loT devices are often limited
in computational and energy resources, making them
sensitive for multi-vector cyberattacks. Thus, their wide
distribution is associated with an increase in the number
of potential threats to information security. Among the
most dangerous attacks are DDoS>, routing attacks,
SQLY injections, and other forms of multi-vector threats.

Modern methods of detecting attacks, which
typically require significant computational resources,
can prove inefficient under limited conditions of IoT.
This leads to the necessity to develop new approaches
that take into account the limitations of computational
and informational resources of IoT and simultaneously
ensure high security level.

In the present work, we propose a scalable model for
detecting multi-vector attacks, which represents a hybrid
architecture of Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) or Gated Recurrent
Unit (GRM) neural networks (CNN + LSTM/GRUY)
for analyzing spatiotemporal dependencies of network
traffic and decentralized data verification. In order to
reduce computational costs, the model incorporates the
use of blockchain technologies and neuron pruning.
The proposed model, which is oriented towards
working in real time given limited resources, is
applicable for modern IoT networks. The experimental
testing of the efficiency of the developed model using
the CIC IoT Dataset 2023 dataset demonstrated its
superiority over existing solutions.

3 Distributed Denial of Service is a form of cyberattack
on web systems in order to disable them or make it difficult for
ordinary users to access them.

6 Structured Query Language.

7 Gated Recurrent Unit.

1. ANALYSIS OF LITERATURE

Sen et al. [1] proposed a mathematical tool for
modeling cyberattacks on electric grids involving
game theory and the construction of attack graphs. The
model is underlaid by the concept of attacker—defender
dynamics, where the attacker tries to damage the
operation of an electric grid, while the defender tries to
prevent the damage using proactive and reactive defense
measures. The main advantage of the model is taking into
account the attacker—defender dynamics, which makes
the model more realistic for use in complex systems.
The model uses attack graphs to model multilayer and
multistep attacks, taking into account their complexity
and diversity. However, the drawbacks of the model
include the requirement of initial data on the system and
its vulnerabilities, as well as the requirement of the exact
evaluation of probabilities of a successful attack and
cyber-shutdown cost. This may complicate its practical
application for limited data systems.

Lysenko et al. [2] proposed a method for detecting
multi-vector cyberattacks on IoT infrastructure by
analyzing network traffic and machine learning.
Lysenko et al. distinguished four key types of signs
helping in accelerated detection of attacks based on
data flows, MQTT®, DNS°, and HTTP!. The method
helps increasing the efficiency of detecting attacks by
early diagnosis of harmful traffic by analyzing flows
and deep analyzing packets for exact detection of multi-
vector attacks. This makes this method available for [oT
networks with high data volume and complex attack
structure. However, the complexity of the method is due
to the necessity for an exact determination of a set of
signs and their processing, which requires much real-
time computational resources in large IoT networks.

Aguru and Erukala [3] proposed a methodology of
protecting decentralized IoT networks from multi-vector
DDoS attacks using blockchain technologies and deep
learning. A Prevent-then-Detect two-stage approach
was proposed, where, at the first stage, an intrusion

8 Message queuing telemetry transport.
9 Domain name system.
10 HyperText transfer protocol.
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prevention system (IPS) works through a blockchain
consortium of validators, while at the second stage, an
intrusion detection system (IDS) uses deep learning
models for analyzing network traffic and detecting
threats. The blockchain ensures security of data transfer
between network nodes and controls access to resources
of ToT network using intellectual contracts, which are
used to determine actions on attack detection and threat
prevention. The attack prevention system in a blockchain
consortium uses a consensus algorithm to test suspicious
traffic. However, the significant computational resources
required for the operation of blockchain system and deep
neural networks may limit its operability in devices with
limited computational possibilities in IoT networks.

Ipole-Adelaiye et al. [4] proposed a method for
detecting multi-vector attacks (MVA) using a multilayer
perceptron (MLP) approach to analyze network traffic
by means of machine learning for detecting various
attack vectors. In particular, network data from packet
capturing (PCAP) are analyzed to determine anomalous
patterns in the behavior of network compounds. The
method uses neural networks for data classification
and subsequent analysis to increase attack detection
accuracy. The MLP, which represents the main
component of the proposed system, consists of an
input layer, a hidden layer, and an output layer. While
the MLP method is suitable for the problems where
a high detection accuracy is important, faster models
can be used for networks with limited computational
resources.

Pakmehr et al. [5] analyze various methods for
detecting DDoS attacks on IoT networks with an
emphasis on features and challenges that emerge
when applying these methods to IoT networks.
The authors reviewed several categories of attack
detection methods, including signature, anomalous,
and hybrid approaches. The mathematical tool
includes algorithms based on machine learning, such
as Support Vector Machine (SVM), Decision Trees,
K-Nearest Neighbors (KNN), and Random Forest.
These algorithms are used to classify network traffic
and separate anomalous patterns characteristic of
DDoS attacks. Although the proposed approaches
more efficiently cope with high-volume and various
attacks on loT devices, their efficiency is limited by the
complexity of refining the models and the necessity of
large computational resources.

Alhakami [6] proposed a mathematical tool for
estimatinginvasiondetectionmethodsunder Gen V Multi-
Vector Attacks. The method is based on a combination
of two methods: Fuzzy Analytic Hierarchy Process
(Fuzzy AHP) and Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS). These methods
allow the estimation of various criteria of efficiency of
attack detection systems: detection accuracy, adaptivity,

scaling, effect on resources, detection time, and
automation. A special attention is made to such aspects
as adaptation to new threats, the possibility of operating
in scaling networks, and the minimization of loading
resources at high automation and rapid response.

Saiyed and Al-Anbagi [7] propose an approach for
detecting multi-vector DDoS attacks on IoT networks
using deep ensemble learning with pruning. Saiyed
and Al-Anbagi presented the Deep Ensemble learning
with Pruning (DEEPShield) system, which combines
the CNN and LSTM networks for analyzing network
traffic and detecting both high-volume, and low-
volume DDoS attacks. The mathematical tool is based
on using an ensemble approach, where CNN extracts
spatial signs from network traffic, and LSTM is used
to analyze time dependencies. The DEEPShield
system demonstrates a high (>90%) accuracy of attack
detection and reduces prediction time in comparison
with similar models.

Doe et al. [8] describe a hybrid model for analyzing
threats and classifying attacks in IoT networks using
deep learning and adaptive optimization algorithm
Mayfly (LAMOA!'"). The model tends to the detection
of routing attacks on IoT networks (sinkhole, wormhole,
black hole, and Sybil), which significantly reduce
their productivity and security. The model is based
on recurrent neural network with long short-term
memory for processing time series of network traffic
and classification of attacks with the Mayfly adaptive
algorithm for optimizing of model hyperparameters.
The model, which demonstrates a high ability to exact
classification of various types of attacks, is an efficient
solution for ensuring security of IoT networks; however,
its complexity and computational costs may limit its
use in networks with limited sources, thus requiring its
further optimization.

Aguru and Erukala [9] propose a lightweight
framework for detecting multi-vector DDoS attacks
on mobile medicine networks based on IoT using deep
learning. Here, the focus on accuracy and efficiency
aligns with the purposes of the proposed model and
underscores the need for adaptation of detection methods
to the specificity of mobile IoT devices, which makes
their operation actual for further research in this area.

Petrenko et al. [10] present a method for detecting
and counteracting multi-vector threats on decentralized
IoT systems that emphasizes the necessity of complex
security strategies. The authors underline the importance
of integrating various protection methods, including
machine learning and blockchain technologies.

The works [11-15] compare approaches to
common mitigation of attacks on cloud and fuzzy

Il Learning-based Adaptive Mayfly Optimization
Algorithm.
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computations, which may improve the scalability of the
model developed in the work, Leng et al. [11] propose
methods for improving the scalability and efficiency of
protection of IoT networks, which is an important aspect
of ensuring security in conditions of growing number
of devices and traffic volume. Ali et al. [12] describe
a method for protecting decentralized IoT networks
from multi-vector DDoS attacks using blockchain
technologies and deep learning methods. The proposed
two-stage approach combines prevention and detection
of attacks, allowing for the efficient control of network
threats and an improved level of security. Dalal et al. [13]
propose a method for detecting multi-vector attacks
based on MLP. Attention is focused on the importance
of analysis of network traffic for identifying anomalous
patterns, which is a key moment for improving attack
detection accuracy. Zahid et al. [14] review various
methods for detecting DDoS attacks on IoT networks.
The authors discuss signature-, anomalous-, and
hybrid approaches in terms of their advantages and
disadvantages in the context of IoT. Lungu et al. [15]
describe a mathematical tool for estimating invasion
detection methods in conditions of fifth-generation
multi-vector attacks. By combining decision-making
methods, the efficiency of attack detection systems can
be estimated, including accuracy and adaptivity.

To construct a simulation model of a scalable
method of detection of multi-vector attacks taking into
account the limitations of computational and information
resources of IoT devices, the following three most
suitable models were chosen:

(1) Deep Ensemble Learning with Pruning method [7]
using a combination of CNN and LSTM for
analyzing network traffic and pruning to reduce
computational costs.

(2) Threat Analysis model [8] using LSTM for
analyzing routing attacks on IoT networks with
adaptive optimization of hyperparameters by the
Mayfly algorithm.

(3) Blockchain-based Threat Intelligence Framework
method [3] combining blockchain technology with
deep learning for protection of IoT networks from
multi-vector DDoS attacks.

2. SIMULATION MODEL OF SCALABLE METHOD
OF DETECTING MULTI-VECTOR ATTACKS
TAKING INTO ACCOUNT LIMITATIONS OF
COMPUTATIONAL AND INFORMATIONAL

RESOURCES OF loT DEVICES

The developed model, which should detect multi-
vector attacks with high accuracy while minimizing
computational costs and taking into account limitations
inherent in IoT devices, must be suitable for scaling in
large decentralized IoT networks.

The simulation model is built from the following
main components:
(1) CNN +LSTM/GRU network traffic analysis module.
(2) Mayfly algorithm for adaptive optimization of
hyperparameters.
(3) Proof of Voting (PoV) blockchain-oriented
consensus mechanism for decentralized verification.
(4) Neuron pruning for reducing computational costs.
Let us consider these components in more detail.

2.1. CNN + LSTM/GRU network traffic
analysis module

The module for network traffic analysis and detection
of anomalies in data sequence uses a hybrid architecture
of CNN and LSTM (or GRU to reduce computing costs),
where:

e The CNN processes spatial signs of network traffic.
Input data are represented as a multidimensional
tensor, where each element characterizes network
packets (e.g., time, size, protocol type). Convolutional
layers separate spatial patterns in traffic;

e The LSTM (or GRU) analyzes time dependencies.
This helps detect complex multi-vector attacks,
which manifests themselves on different time range.
Long Short-Term Memory shares information on the
previous states of traffic and helps predicting future
events, which is important for detecting long-term
attacks, such as DDoS.

The network traffic analysis module in the simulation
model is based on a hybrid architecture, which combines
convolutional neural networks for analysis of spatial
dependencies of network traffic and recurrent neuronal
networks (LSTM or GRU) for analysis of time dependencies.
Such a structure efficiently analyzes multi-vector attacks,
which may reveal themselves through complex anomalies
in spatial and time dependencies of network traffic.

The convolutional neural network is used to
separate spatial signs from network traffic represented
by multidimensional data (tensor). The input traffic,
including such parameters as time steps, packet size,
protocol type, IP addresses, and other metrics, is
transformed into a tensor of dimension X € R”"*¢, where
h is the tensor height (number of packets or time steps),
w is the tensor width (number of signs or characteristics
per packet), and ¢ is the number of channels (e.g., this
may be separation by protocols of data types).

The man convolutional equation is written as

hy Wy
Yi,j,k = Z ZXi+m,j+n,ch,n,k +bk’ (1)

m=1n=1

where X; e is the input tensor for position (i, j) in the
channel ¢, W, is the convolutional filter of sizes
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hy, % w for the channel k, b, is the bias for the channel £,

and \ € ik is the convolutlonal result in the channel £.
Convolutlon (1) is followed by applying an

activation function for increasing nonlinearity:

Zl.,L P ReLU(Y[’j’ o) = max(0, Yl.’j’ -

Here, ReLU (Rectified Linear Unit) is one of the
most popular activation functions, which retains only
positive values.

Convolution network separates spatial patterns
in network traffic data, such as packet frequency and
correlation of various traffic parameters. After spatial signs
are isolated using CNN, they are transferred to LSTM to
analyze time dependencies. Long Short-Term Memory
takes into account the time behavior of traffic and helps
isolating multi-vector attacks, which may show through
sequential changes in network behavior.

Let us consider the main components of LSTM,

(1) Input gates controls the choice of a new input state
to refresh state of memory. The input gates at time

t are activated as

it = G(Win ' [ht—l’ Xt] + bin)’ (2)
where X, is the input vector at time ¢ (spatial signs
isolated from CNN); 4, , is the hidden state at the
previous time step, W, is the weight matrix for the
input gate, b, is the bias vector for the input gate, and

o is a sigmoid normalizing values on the interval [0, 1].
(2) Forgetting gates determine the part of the previous

state that should be preserved. The function f, for

activation of forgetting gates can be written as

Ji= oW [, X + D), ©)

where W, is the weight matrix for the forgetting
gate; b, is the bias vector for the forgetting gate.

(3) State of memory C, is refreshed at each time step
taking into account new information as:

C,=f,C_, +itanh(W_-[h,_,,x]+b), 4)
where C,_, is the previous state of memory; C, is
the new state of memory; f, is the forgetting gates
i, is the input gates; tanh is the hyperbolic tangent,
which is a function of activation used for refreshing
state of memory; W_ is the weight matrix for state of
memory; [, |, X,] is the concatenation of the hidden
state at the previous step and the current input vector;
and b_ is the bias vector for refreshing state of memory;
the index ¢ indicates the collection of data to memory.

(4) Output gates control the part of state of memory that
should be used for refreshing the hidden state. The
output gates are activated as follows:

0,= (W, [h_p, x]+by), )
where o, is the activation function of the output gates, ¢ is
the activation sigmoid, W is the weight matrix for the
output gates, and b is the bias vector for the output gates.
The new hidden state 7, is calculated as

h, = o, tanh(C), ()

where £, is the hidden state at time 7, which is used

for final classification of network traffic; and C, is

the current state of memory.

Instead of LSTM, GRU can be used, which is
modification that uses less computational costs.
GRU combines forgotten and input gates into a single
refreshing gate, which reduces computational costs and
improves model operation under limited resources.

Let us consider the main components of GRU.

(1) Refreshing gates:
z,=0(W, [h . x]+b,). ()

Here, z, is the activation of the refreshing gates, which

controls how strongly the current state affects the

previous one; the index z shows a refreshing gate (zero).
(2) Removal gates:
ry=o(W, - [h 1. x] +b). ®)

Here, r, is the activation of the removal gates, which

controls how strongly the previous state should be

forgotten; the index r indicates the reset gate.
(3) Refreshing of the hidden state:
h,=(~-z)h,_, +ztanh(W,[rh, ,x]+b,), (9)

=1

where h, is the refreshed hidden state at time 7, and

W, is the weight matrix for refreshing the hidden

state; the index h displays the gate of hidden state.

Recurrent neural network GRU uses fewer
parameters than LSTM, which makes it more suitable for
problems requiring smaller computational costs, such as
operation under limited resources of IoT devices.

After processing of the CNN and LSTM/GRU
data, the model uses a fully connected layer for final
classification of traffic. This layer calculates the
probabilities that data belongs to one of the classes, e.g.,
normal traffic or attack:

P ek = Softmax(W_ A +b_ ), (10)
where P, is the probability that the input traffic is
attack, W_ , is the outer layer weights, /4 is the hidden

state at the last time step, b_ , is the outer layer bias, and
Softmax normalizes the outer probability values.
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The main variables of the model are the input tensor

X € R of network traffic; the weight matrices W

of layers (CNN, LSTM/GRU); the bias vectors b of

layers (CNN, LSTM/GRU); the input (7,), forgotten (f,), and

output (0,) gates to LSTM, respectively; the refreshing (z,)

and removal (r,) gates to GRU, respectively; the hidden

state /1, at time £; the state of memory C, in LSTM; and the
probability P, . that the traffic is attacking.
The network traffic analysis module based on

a hybrid architecture of CNN + LSTM (or GRU)

combines spatial and time dependencies of network

data. Such architecture efficiently detects multi-vector
attacks on IoT networks, which is particularly important
for systems with limited computational resources.

The model operates as follows.

(1) The input traffic is transformed into
a  multidimensional  tensor, which enters
convolutional layers for isolating signs.

(2) The isolated signs enter the LSTM/GRU for
analyzing time dependencies.

(3) The model classifies the traffic as normal or attacking.

2.2. Adaptive optimization of hyperparameters
using the Mayfly adaptive algorithm

To improve the efficiency of the model and tune it to
specific network conditions (e.g., data volume or type of
attacks), we use the Mayfly adaptive algorithm [8]. The
Mayfly algorithm helps to automatically find the optimal
hyperparameters of the model, such as:

e number of layers in CNN and LSTM;
e number of filters and neurons in each layer;
e model learning rate.

The Mayfly adaptive algorithm accelerates
model tuning and ensures its optimal productivity
without necessity of manual tuning. The algorithm
uses evolutionary methods for searching for optimal
parameters and is adapted during model learning.

The main steps of the Mayfly adaptive algorithm are
the following:

1. Population initialization.

2. Males and females: separation into two groups with
different search strategies.

3. Global and local search: search for the best solutions
by males and females.

4. Evolution and refreshment of rates and positions.

5. Rendezvous and reproduction.

The main variables and parameters of the algorithm
are the following.

N—number of individuals in the population;

x"—position of male i in  solution
space (hyperparameter value);

xif —position of female /;

vi' —male velocity;

vl —female velocity;

etal.

o, P, y—male and female motion control

coefficients (inertia, acceleration, and interaction,
respectively);

Zpesr—global best solution found by all males and
females;

Ppesi—Personal best solution found by male or female;

A—attraction coefficient for rendezvous of males
and females;

e—random bias affecting mutation in search.

2.2.1. Population initialization
The Mayfly algorithm begins with random
initialization of the initial population of males and
females (hyperparameters) in search space. Each male
or female is a model hyperparameter vector
X; = [0 X oo Xyl
where d is the hyperparameter space dimensionality (e.g.,
number of layers or neurons, training rate, etc.).

The position x; of each male or female in
hyperparameter space is initialized randomly:

x(0), xf (0) ~ Uniform(x

min > Xmax )’

where x and x are the hyperparameter space

“min max . .
boundaries, aqd Umform(x.min, X, ., 18 the function of
random sampling from the interval [x_, , X . ].

2.2.2. Refreshment of male velocity and position
Males find solutions in global space, refreshing
their position based on personal best solution p, ., and
global best solution g, ... The male position refreshment
velocity is calculated as:

vit(E+ 1) =oavi () +Bin (pbest,i —x () +

+Bory (8pests — X" (1),

where o is the inertia coefficient (which controls
how strongly the velocity of the previous step affects
the current position); B, and B, are the acceleration
coefficients, which control the effect of the personal and
global bets solutions on the velocity refreshment; and
r; and r, ~ Uniform(0, 1) are random values, which
ensure random bias in search.

The position of each male is refreshed taking into
account its new velocity:

XM+ D) =x" )+ vt +1).

2.2.3. Refreshment of female
velocity and position
Females perform local search, refreshing their
positions based on the distance to males. The female
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position refreshment velocity is calculated taking into
account the interaction with males:

Vi@ +1) =0 () - xf )+ e,

where A is the attraction coefficient between males
and females, and € is a random deviation for ensuring
diversity of solutions.

The positions of females is refreshed as follows:

xf+D)=xl () +vi@E+1).

2.2.4. Evaluation of solutions
Each male or female is evaluated using
a fitness function, which may be related to model,
accuracy, learning time, model complexity, and other
parameters. The fitness function F(x,) for each male or
female is calculated as:

F(x;) = Evaluation Model(x,),

where x; are the hyperparameters represented by
male or female, and Evaluation Model is a function
estimating the model productivity at the given
hyperparameters.

2.2.5. Rendezvous and reproduction

After the velocities and positions are refreshed,
males and females make a rendezvous, which models
reproduction in the algorithm. When males and females
become close enough, there are crossing over and
mutation:

e crossing over transforms part of genetic
information (hyperparameters) from males to
females:

Xow = AX 4+ (1= k)xlf,

where x . 1s a new value (position) of male or
female as acquired by crossing over, X" is the

current position of male i, Xl-f is the current position
of female i, and A is a coefficient determining the
weight of influence of female in the new
state (A typically ranges from O to 1).

e mutation randomly changes some parameters with
probability p_ ..

2.2.6. Completion criterion

The Mayfly algorithm performs until one of
the following conditions is used: the maximum
number 7, of iterations has reached, or the fitting
function is not improved for several consecutive
operations.

2.3. Decentralized verification mechanism
based on blockchain technology

The security and reliability of the system
under decentralized IoT networks are ensured by
PoV blockchain-oriented consensus mechanism [3]. The
main functions of this component are the following:

e decentralized verification of attack data, by which
several network nodes analyze network traffic and send
information on possible attacks to distributed ledger;

e validation of blocks occurs through polling of
validating nodes: if more than 50% nodes support
attack, the information about it is written in the
distributed ledger, and dangerous IP addresses are
blocked through action modules.

The decentralized verification module uses
blockchain technologies for ensuring data security and
preventing attacks in IoT networks. This module operates
based on PoV consensus mechanism, which allows
network nodes (validators) to vote for data blocks on
traffic, attacks, or state of network. Blockchain ensures
protection from deception of data, decentralized storage,
and automatic performance of such actions as block of
harmful IP addresses through action modules.

The main elements and variables are the following.

B—data block containing information on network
traffic, detected attacks, or refreshing states of network;

N—number of nodes (validators) in blockchain network;

V—voice of validator i for acceptance or rejection
of block;

P, iq—probability that the block is valid,

T ,—block validation time;

AM—Action Module, which contains data on
attacks and blocks of IP addresses.

This subsection presents key steps of processing
network traffic and ensuring security in blockchain
system. These steps describe how network nodes interact
for detecting anomalies, data verification, and automatic
blocking of suspicious IP addresses. Every step plays an
important rope in creating a reliable and efficient system
of protecting from cyberattacks, ensuring data integrity
and rapid response to threats.

The steps of processing network traffic and ensuring
security in blockchain system are the following:

Step 1. Formation of data block.

Each blockchain network node processes the
entering network traffic and, if there is an anomaly or
suspicious activity (e.g., multi-vector attack), forms data
block B. This block includes the following elements:

B = {Block ID, Data, Previous Hash, Timestamp,
Signature},

where Block ID is the unique block identifier, Data
is the information on traffic and possible attacks
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(e.g., IP addresses, type of attack, and timestamps),
Previous Hash is the hash of the previous block in
blockchain for maintaining continuous chain, Timestamp
is the block formation time, and Signature is the digital
signature of the node that formed the block.

Step 2. PoV consensus mechanism.

After the block is formed, it is transferred to other
network nodes for verification using the PoV consensus
mechanism.

The block is validated by voting of network nodes in
the following order:

e cachnode analyzes the data block B, tests its integrity
and reliability, and then sends its voice V; (voting
may be binary: V; = 1 for acceptance of block and
V.= 0 for rejection of block);

o the probability that the block is valid is calculated
as

N
2V
=1
Poatig =* N

If P4 = 0.5 (most nodes support the block),
then the block is considered valid and is added to the
distributed ledger, and if P, < 0.5, then the block is
rejected.

Step 3. Refreshing of distributed ledger

After reaching consensus and supporting block B, it
is added to the distributed ledger. Each item in the
distributed ledger is related to the previous block through
the Previous Hash. Which ensures continuous and
invariable data chain. A new block is added to the
distributed ledger:

B, ., = {Hash(B

prev
Signature

), Data

ey Limestamp, .

new}’

where Hash(BpreV) is the hash of the previous block,
which guarantees the integrity of the entire chain.

Step 4. Using action modules for automatic blocking
of IP addresses.

Blockchain system uses action modules for automatic
actions when detecting attack. Action modules Action
modules automatically block IP addresses, send notice,
and refresh blacklists in network. The structure of action
module can have the following form:

AM = {Source IP (SIP), Destination IP (DIP),
Signature, Blacklisted IP, Attack Label},

where Source IP (SIP) is the IP address, from which
traffic enters; Destination IP (DIP) is the IP address of
target device; Signature is the digital signature of data for
information authentication; Blacklisted IP is the list of
IP addresses, which were blocked after detecting attack;

and Attack Label is the attack label, which contains type
of attack (e.g., DDoS, SQL injection, multi-vector attack).

Step 5. IP address blocking.

Once the data block on attack is confirmed and
added to blockchain, action module automatically blocks
harmful IP addresses in network. For example, if DDoS
traffic is detected, then the IP address of the SIP
attacking device is added to the Blacklisted IP blacklist
through action module

AM(SIP) = Blacklisted IP.

These data are refreshed at every network node
through distributed blockchain structure, which
guarantees the consistency of actions of all participants.

Step 6. Block validation time.

For each block B, the block validation time 7} is
calculated, which depends on the time 7, . of voting of all
nodes, thetimez . ofperformance ofall action modules,
and the time 7, . of block transmission between nodes:

Ty=1

vote

+t tt

contract transmit

The optimization of block validation time is critical
for IoT networks with limited resources and high data
exchange rate.

2.4. Pruning

Pruning is used to reduce computational costs and
optimize model operation at low-power IoT devices.
After model learning, minor neurons and their
connections are pruned to reduce model volume without
significant impairment of its accuracy.

Pruning is performed as follows:

e after learning of neural network, the weights of its
connections are analyzed. If the weights are below
a given level, then the connections are pruned;

e the model is restarted with a reduced number
of neurons and parameters, which reduces
its computational complexity and memory
requirements.

The main idea is to prune unnecessary or minor
neurons or change weights after model learning,
insignificantly reducing its productivity.

The main elements and variables are the following:

W—weight matrix of neural network;

b—Dbias vector of neurons;

AIW)—activation function for network weights;

6—threshold for weight pruning;

M-—masking matrix for weight pruning;

n . —total number of parameters (weights) in
neural network;

Morune g—humber of pruned weights;

p—fraction of pruned weights or neurons.
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2.4.1. Determination of significance
of weights and neurons

After the neural network is learned, it is necessary

to determine, which weights W in neural network affect
least on output values and can be pruned. This is done
by calculating the significance of each weight W, .. As
a measure of significance, the metric of absolute value of
weight can be used, in which the smaller the weight, the
less significant this weight for neuron activation:
Signiﬁcance(Wl.,j) = |le| (11)

If the weight is close to zero, then its influence on
network output is minimal, and such a weight can be pruned.

2.4.2. Pruning threshold
To determine, which weights should be pruned,
threshold 0 is introduced. The weights the absolute
value of which is smaller than 0 are considered minor
and removed (equated to zero 0):
W,-,j:()ilel-,j|<9. (12)
The threshold 0 is chosen empirically or optimized

during experiments. This threshold can be static or
dynamic, adapted by analyzing model structure.

2.4.3. Masking matrix
Lest weight pruning affect neurons that have
a significant effect on the output values of the model and
its productivity, masking matrix M is used, denoting which
weights should be retained, and which should be zeroed:

Lif |26,
= ’ (13)

M. .
0, |, | <6,

Pruned masking matrix:

Woruned = W OM, (14)
where © is the elementwise product of the weight
matrix W and the masking matrix M. This guarantees
that only significant weights participate in computations,

and minor weights are pruned.

2.4.4. Estimation of pruned weight fraction
The fraction of pruned weights or neurons is
calculated as

n
runed

= e (15)
Motal

where Moruned is the number of pruned weights, i.e.,

weights for which [V, j| < 0; and n,,,, is the total number
of weights in the model.

2.4.5. Iterative pruning

Simple pruning threshold may be insufficiently
efficient for all network layers, especially for deep
models with numerous layers. Therefore, iterative
pruning may be used: weights are pruned not at once but
stepwise, with a gradual increase in threshold 6.

At each iteration, the weights are recalculated using
the masking matrix:

wnew - Wold OM. (16)

Then the network is relearned on new data to restore
its accuracy after pruning. This process is repeated
several times until the pruned weight fraction reaches
the desired level p.

2.4.6. The main steps of the developed simulation
model and metric for estimating the model quality
after weight pruning

The main steps of the model operation are the following:
(1) traffic analysis using CNN + LSTM for detecting

spatiotemporal signs and identifying anomalies;

(2) model optimization: the Mayfly algorithm
automatically tunes model hyperparameters
depending on the conditions of network and data,
which ensures its adaptability;

(3) suspicious IP addresses and traffic are verified and
blocked through blockchain consortium. If the
attack on IP addresses is confirmed, they are blocked
through action modules;

(4) neuron pruning: after the initial learning and
verification of the model, neurons are pruned
to reduce computational complexity and model
adaptation to resources of IoT devices.

After pruning, it is important to estimate the changes
in model productivity and resource intensity. The main
metrics of model quality after weight pruning are the
following:

(1) the fraction of accurate predictions among the
total amount of predictions (accuracy of correct
predictions):

TP+TN

E, = Accuracy = ,
TP+TN+FP+FN

(17)

where TP is the number of true positive

predictions (correct predictions of attacks), TN is

the number of true negative predictions (correct

predictions of normal traffic), FP is the number of

false positive predictions (false alerts), and FN is the

number of false negative predictions (lost attacks);
(2) recall:

E, =Recall = L,

18
TP+ FN 18
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which determines the model ability to detect all
attacks in a sample;

(3) precision (fraction of true positive predictions
among all positive predictions (accuracy of true
positive predictions)):

TP

E; =Precision = ———,
TP+ FP

(19)
which determined how much model predictions of
positive classes are correct;

(4) F1 metric:

2 E2E3
Ey+Ey
which is a harmonic mean between recall and
precision;
(5) time of data processing and performing model
predictions:

E, (20)

E5 - Tpruned - Toriginal(1 -Dp)

2h

where T pruned is the computational time after
pruning, 7 original is the computational time by the
initial model, and p is the fraction of pruned neurons;

(6) memory usage—(reduction of memory usage after
weight pruning):

E() - Mpruned - ]Mmiginal(1 _p)a (22)

where M, ined is the memory required for storing
pruned model, and M_; ginal 1S the memory necessary
for storing the initial model.

3. IMPLEMENTATION AND EXPERIMENT
3.1. Design of experiment

In this section, we experimentally tested the developed
simulation model of detecting multi-vector attacks
taking into account the limitations of computational and
informational resources of loT devices.

The experiment uses CIC [oT Dataset 2023, which
contains data of network traffics, both normal, and
attacking, with various characteristics and signs, such as:

e [P addresses (Source/Destination);
ports (Source/Destination);
connection time;
packet size;
protocols (TCP'2, UDP!3, HTTP, DNS);
attack mark (e.g., DDoS, SQL injection, Brute
Force).

12 Transmission Control Protocol.
13 User Datagram Protocol.

The dataset is divided into several classes:
e normal traffic;
e attacking traffic (various types of attacks).

The experiment compares the results of the developed
simulation model with several similar methods used to
detect attacks on IoT networks.

The CIC IoT Dataset 2023 data were normalized
using Min-Max Scaling to reduce all signs to the
range [0, 1]. Outliers were removed by Interquartile
Range (IQR) method, and new signs were generated by
aggregation of time characteristics of traffic (e.g., mean
number of packets in 10 s).

The testing was performed on a workstation
based on Macbook Pro notebook (Apple Inc., USA)
with M2 Pro processor (includes 12 processor
cores (8 performance cores and 4 efficiency cores),
19 graphics engines, and 16-core neural coprocessor)
and16-GB random access memory with a throughput
efficiency of about 200 GB/s.

3.2. Structure of experiment

The experiment was performed in several steps:

(1) Data preparation, at which the CIC IoT Dataset 2023
data are divided into learning and testing samplings
in the ratio 70 : 30. Then, the data are preliminarily
processed: signs are normalized, outliers are
removed, and new signs are generated (if necessary).

(2) Model learning, at which the proposed model
is learned based on the hydride architecture
CNN + LSTM/GRU using neuron pruning to reduce
computational costs.

The model hyperparameters are optimized using the
Mayfly algorithm.

For comparison, other models are also learned, such
as Random Forest, SVM, Deep Learning (MLP).

The processing time of a single data packet is found as
the sum of convolution time (1), LSTM/GRU processing
time (2)—(9), and classification time (10). Owing to neuron
pruning (11)—(16), the model significantly reduces the
number of parameters, which decreases the computational
costs and improves productivity on devices with limited
resources. This makes it possible to efficiently use the
model under real conditions, such as real-time monitoring
systems, where fast response and minimum memory
consumption are important. The quality of the simulation
model is estimated using metrics (17)—(22).

3.3. Analysis of the obtained results

The efficiency of the proposed model was estimated in
experimental studies. Table estimates the efficiency using
evaluation metrics (17)—(22) of various models, including
the proposed model based on the CNN + LSTM/GRU
hybrid architecture using neuron pruning.
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Table. Experimental results
Evaluation metrics
Model
E,, % Ey, % E;, % E., % Es, ms Eg, MB
Random Forest 96.5 95.7 97.1 96.4 35 220
SVM 94.3 92.6 94.5 93.5 50 250
Deep Learning (MLP) 97.8 97.2 98.0 97.6 20 210
Simulation model CNN + LSTM/GRU 99.1 99.3 98.9 99.1 12 180

Figure 1 compares the results of operation of
the proposed simulation model and its analogs
in accordance with evaluation metrics (17)—(20).
Figure 1 shows that the CNN + LSTM/GRU model
significantly exceeds the other models in all presented
metrics, which confirms its high efficiency in detecting
multi-vector attacks.

Figure 2 compares the results of operation of the
proposed simulation model and its analogs in accordance
with evaluation metrics E5 (21). Figure 2 shows that
the model CNN + LSTM/GRU has the minimum
data processing time and the minimum prediction

%
100

98
96
94
92
90
88

performance time (12 ms), which makes it particularly
suitable for real-time use, whereas the other models
require much more time.

Figure 3 compares the results of operation of the
proposed simulation model and its analogs in accordance
with quality metric E, (22). Figure 5 shows that the
model CNN + LSTM/GRU requires the minimum
memory volume (180 MB) for processing the input data
of 1 million examples with 10 signs, which makes it more
efficient for using on devices with limited computational
resources in comparison with the other models, such as
Random Forest and SVM.

Evaluation metrics

Random Forest
o SVM

Deep Learning (MLP)
= CNN + LSTM/GRU

Fig. 1. Comparison of the results of operation of the developed simulation model CNN + LSTM/GRU

and its analogues in accordance with metrics E; (17)

I

£

= 20
. I 1 =
0

- E,(20)

Random SupportVector Deep Learning  Simulation
Forest Machine (SVM) (MLP) model
CNN +LSTM/GRU

Fig. 2. Comparison of the results of operation of the developed simulation model CNN + LSTM/GRU
and its analogues in accordance with metric E; (21)
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Fig. 3. Comparison of the results of operation of the developed simulation model CNN + LSTM/GRU
and its analogues in accordance with metric Eg (22)

The performed experiment confirms the following:
(1) The developed simulation model attained high
accuracy of detecting attacks at a level of 99.1%,
which suggests its ability to efficiently identify
both known and new types of attacks in real time.
Thus, the proposed architecture based on the
CNN+LSTM/GRU hybrid model can be successfully
applied in the context of analyzing network traffic.
(2) The F1 metric of the developed simulation model
is 99.1%, which indicates high balance between
precision (19) and recall (18). This means that the
model not only accurately identifies attacks, but also
minimizes the number of false alarms and miss.
(3) The request processing time in the proposed
simulation model at hardware resources stated in
3.1 of this work is reduced to 12 ms, making this
model particularly useful for systems requiring fast
response, such as real-time monitoring systems.
This represents a significant advantage over the
other models, which require more processing time.
(4) The developed simulation model uses only 180 MB
memory, making it suitable for implementing on
devices with limited computational resources. This
is particularly important for [oT devices, which are
often limited in memory and computational power.
(5) Neuron pruning significantly reduced the number of
model parameters from 1.5 million to 300 thousand,
which, in turn, decreased computational costs by 80%
and improved productivity. This confirms that model
optimization approaches contribute significantly to its
successful use under limited resources.

CONCLUSIONS

In this work, we have proposed a simulation model
of a scalable method for detecting multi-vector attacks
on IoT devices that takes into account the limitations of
computational and informational resources. The creation
of an efficient solution capable of detecting attacks with
high accuracy is a key objective given the growing
security threats in [oT.

The proposed model is based on a hybrid architecture
of neural networks that combines convolutional neural
networks CNN for analyzing spatial dependencies and
long short-term memory networks LSTM for analyzing
time dependencies of network traffic. An important aspect
is pruning, which significantly reduces the number of
model parameters to decrease computational costs. The
use of blockchain technologies with a PoV consensus
mechanism ensures data security and decentralized
verification, which is critically important for protecting
[oT networks from multi-vector attacks.

The experimental testingusingthe CICIoT Dataset 2023
dataset demonstrated the high efficiency of the proposed
model. The achieved attack detection accuracy 99.1%
confirms its ability to exactly identify both known and
new types of attacks in real time. The F1 metric of 99.1%
indicates a balance between precision and recall, which is
critically important for cybersecurity systems in which both
false alarms and unidentified attacks should be minimized.
In addition to high accuracy, the request processing time
was reduced to 12 ms. This allows the model to function
efficiently under rapid response conditions such as real-
time monitoring systems. Memory use was also optimized
to only 180 MB, which makes it suitable for devices with
limited computational resources.

Thus, the developed simulation model exceeds the
existing solutions in key metrics, such as precision,
processing time, and memory use. The high efficiency
of the model during multi-vector threats to IoT is
ensured by its hybrid architecture, neuron pruning, and
decentralized verification.

This work opens new horizons for further research
in cybersecurity that will lead to efficient solutions for
protecting IoT networks from complex cyberthreats.
Future studies should aim to integrate additional
machine learning and deep learning methods for
increasing the accuracy and stability of the model
to new types of attacks. It is also worth considering
the possibility of optimizing algorithms to reduce
computational costs and increase data processing rates.
Under current conditions of increased device numbers
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and traffic volumes, it becomes crucial to continue to
improve the scalability and stability of blockchain-
oriented solutions.
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