
25

Russian Technological Journal. 2025;13(5):25–40

© V.I. Petrenko, F.B. Tebueva, M.G. Ogur, G.I. Linets, V.P. Mochalov, 2025

ISSN 2500-316X (Online)

UDC 004.056.5
https://doi.org/10.32362/2500-316X-2025-13-5-25-40
EDN JKQMQM

Information systems. Computer sciences. Issues of information security

Информационные системы. Информатика. Проблемы информационной безопасности

RESEARCH ARTICLE

Simulation model of a scalable method
for detecting multi-vector attacks taking
into account the limitations of computing
and information resources of IoT devices

Vyacheslav I. Petrenko, Fariza B. Tebueva, Maxim G. Ogur @,
Gennady I. Linets, Valery P. Mochalov

North Caucasus Federal University, Stavropol, 355017 Russia
@ Corresponding author, e-mail: ogur26@gmail.com

• Submitted: 14.10.2024 • Revised: 13.05.2025 • Accepted: 07.08.2025

Abstract
Objectives. The study sets out to develop a scalable method for detecting multi-vector attacks on Internet
of Things (IoT) devices. Given the growth of security threats in IoT networks, such a solution must provide high
accuracy in detecting attacks with minimal computing costs while taking into account the resource constraints
of IoT devices.
Methods. The developed hybrid neural network architecture combines convolutional networks for spatial
dependence analysis and long short-term memory networks or gated recurrent units representing types of recurrent
neural networks for analyzing time dependencies in network traffic. Model parameters and computational costs are
reduced by pruning. A blockchain with a proof of voting1 consensus mechanism provides secure data management
and decentralized verification.
Results. Experiments on the CIC IoT Dataset 20232 showed the effectiveness of the model: the accuracy and
F1 measure were 99.1%. This confirms the ability to detect known and new attacks in real time with high accuracy
and completeness. Processing time is reduced to 12 ms, while memory usage is reduced to 180 MB, which makes
the model suitable for devices with limited resources.
Conclusions. The developed model is superior to analogues in terms of accuracy, processing time, and memory
usage. Hybrid architecture, pruning, and decentralized verification provide effectiveness against multi-vector
IoT threats.

Keywords: multi-vector attacks, Internet of Things, threat detection, neural networks, blockchain, neuronal pruning,
cybersecurity, node compromise, consensus, federated learning

1  Proof of Voting is a consensus algorithm in blockchain networks, in which participants confirm transactions and ensure
network security by voting for blocks or transactions.

2  CIC IoT Dataset 2023. http://cicresearch.ca/IOTDataset/CIC_IOT_Dataset2023/Dataset/. Accessed June 30, 2025.

https://doi.org/10.32362/2500-316X-2025-13-5-25-40
https://www.elibrary.ru/JKQMQM
mailto:ogur26@gmail.com

26

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

For citation: Petrenko V.I., Tebueva F.B., Ogur M.G., Linets G.I., Mochalov V.P. Simulation model of a scalable
method for detecting multi-vector attacks taking into account the limitations of computing and information resources
of IoT devices. Russian Technological Journal. 2025;13(5):25−40. https://doi.org/10.32362/2500-316X-2025-13-5-25-40,
https://www.elibrary.ru/JKQMQM

Financial disclosure: The authors have no financial or proprietary interest in any material or method mentioned.

The authors declare no conflicts of interest.

НАУЧНАЯ СТАТЬЯ

Имитационная модель масштабируемого метода
выявления многовекторных атак

с учетом ограничений вычислительных
и информационных ресурсов IoT-устройств

В.И. Петренко, Ф.Б. Тебуева, М.Г. Огур @, Г.И. Линец, В.П. Мочалов

Северо-Кавказский федеральный университет, Ставрополь, 355017 Россия
@ Автор для переписки, e-mail: ogur26@gmail.com

• Поступила: 14.10.2024 • Доработана: 13.05.2025 • Принята к опубликованию: 07.08.2025

Резюме
Цели. Основная цель работы – разработка масштабируемого метода для выявления многовекторных атак
на устройства интернета вещей (Internet of Things, IoT). Учитывая рост угроз безопасности в IoT-сетях, реше-
ние должно обеспечивать высокую точность обнаружения атак при минимальных вычислительных затратах
и с учетом ограничений ресурсов IoT-устройств.
Методы. Для достижения поставленной цели разработана гибридная архитектура нейронных сетей, соче-
тающая сверточные сети для анализа пространственных зависимостей и сети долгой краткосрочной памяти
или Gated Recurrent Units (управляемые рекуррентные блоки) – один из видов рекуррентных нейронных се-
тей для анализа временных зависимостей в сетевом трафике. Техника обрезки (pruning) сокращает параме-
тры модели и вычислительные затраты. Блокчейн с механизмом консенсуса Proof of Voting3 обеспечивает
безопасное управление данными и децентрализованную верификацию.
Результаты. Эксперименты на датасете CIC IoT Dataset 20234 показали эффективность модели: точность
и F1-мера составили 99.1%, что подтверждает способность выявлять известные и новые атаки в реальном
времени с высокой точностью и полнотой. Время обработки сокращено до 12 мс, использование памяти –
до 180 МБ, что делает модель пригодной для устройств с ограниченными ресурсами.
Выводы. Разработанная модель превосходит аналоги по точности, времени обработки и использованию
памяти. Гибридная архитектура, обрезка и децентрализованная верификация обеспечивают эффективность
против многовекторных угроз IoT. Работа открывает перспективы для исследований в кибербезопасности,
предлагая решения для защиты IoT-сетей от сложных атак.

3  Proof of Voting (алгоритм консенсуса) – это консенсусный алгоритм в блокчейн-сетях, при котором участники под-
тверждают транзакции и обеспечивают безопасность сети путем голосования за блоки или транзакции. [Proof of Voting
is a consensus algorithm in blockchain networks, in which participants confirm transactions and ensure network security
by voting for blocks or transactions.]

4  CIC IoT Dataset 2023. http://cicresearch.ca/IOTDataset/CIC_IOT_Dataset2023/Dataset/. Дата обращения
30.06.2025. / Accessed June 30, 2025.

https://doi.org/10.32362/2500-316X-2025-13-5-25-40
https://www.elibrary.ru/JKQMQM
mailto:ogur26@gmail.com

27

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

INTRODUCTION

Due to the development of Internet of Things (IoT)
technologies networks of IoT devices have become an
integral part of modern informational infrastructure.
These devices ensure the interaction of numerous
systems and platforms in real time to increase the
effectiveness, convenience, and flexibility of various
sectors: from smart homes and cities to industrial and
medical systems. However, IoT devices are often limited
in computational and energy resources, making them
sensitive for multi-vector cyberattacks. Thus, their wide
distribution is associated with an increase in the number
of potential threats to information security. Among the
most dangerous attacks are DDoS5, routing attacks,
SQL6 injections, and other forms of multi-vector threats.

Modern methods of detecting attacks, which
typically require significant computational resources,
can prove inefficient under limited conditions of IoT.
This leads to the necessity to develop new approaches
that take into account the limitations of computational
and informational resources of IoT and simultaneously
ensure high security level.

In the present work, we propose a scalable model for
detecting multi-vector attacks, which represents a hybrid
architecture of Convolutional Neural Network (CNN) and
Long Short-Term Memory (LSTM) or Gated Recurrent
Unit (GRM) neural networks (CNN + LSTM/GRU7)
for analyzing spatiotemporal dependencies of network
traffic and decentralized data verification. In order to
reduce computational costs, the model incorporates the
use of blockchain technologies and neuron pruning.
The proposed model, which is oriented towards
working in real time given limited resources, is
applicable for modern IoT networks. The experimental
testing of the efficiency of the developed model using
the CIC IoT Dataset 2023 dataset demonstrated its
superiority over existing solutions.

5  Distributed Denial of Service is a form of cyberattack
on web systems in order to disable them or make it difficult for
ordinary users to access them.

6  Structured Query Language.
7  Gated Recurrent Unit.

1. ANALYSIS OF LITERATURE

Sen et al. [1] proposed a mathematical tool for
modeling cyberattacks on electric grids involving
game theory and the construction of attack graphs. The
model is underlaid by the concept of attacker–defender
dynamics, where the attacker tries to damage the
operation of an electric grid, while the defender tries to
prevent the damage using proactive and reactive defense
measures. The main advantage of the model is taking into
account the attacker–defender dynamics, which makes
the model more realistic for use in complex systems.
The model uses attack graphs to model multilayer and
multistep attacks, taking into account their complexity
and diversity. However, the drawbacks of the model
include the requirement of initial data on the system and
its vulnerabilities, as well as the requirement of the exact
evaluation of probabilities of a successful attack and
cyber-shutdown cost. This may complicate its practical
application for limited data systems.

Lysenko et al. [2] proposed a method for detecting
multi-vector cyberattacks on IoT infrastructure by
analyzing network traffic and machine learning.
Lysenko et al. distinguished four key types of signs
helping in accelerated detection of attacks based on
data flows, MQTT8, DNS9, and HTTP10. The method
helps increasing the efficiency of detecting attacks by
early diagnosis of harmful traffic by analyzing flows
and deep analyzing packets for exact detection of multi-
vector attacks. This makes this method available for IoT
networks with high data volume and complex attack
structure. However, the complexity of the method is due
to the necessity for an exact determination of a set of
signs and their processing, which requires much real-
time computational resources in large IoT networks.

Aguru and Erukala [3] proposed a methodology of
protecting decentralized IoT networks from multi-vector
DDoS attacks using blockchain technologies and deep
learning. A Prevent-then-Detect two-stage approach
was proposed, where, at the first stage, an intrusion

8  Message queuing telemetry transport.
9  Domain name system.
10  HyperText transfer protocol.

Ключевые слова: многовекторные атаки, интернет вещей, выявление угроз, нейронные сети, блокчейн, об-
резка нейронов, кибербезопасность, компрометация узлов, консенсус, федеративное обучение

Для цитирования: Петренко В.И., Тебуева Ф.Б., Огур М.Г., Линец Г.И., Мочалов В.П. Имитационная модель
масштабируемого метода выявления многовекторных атак с учетом ограничений вычислительных и информа-
ционных ресурсов IoT-устройств. Russian Technological Journal. 2025;13(5):25−40. https://doi.org/10.32362/2500-
316X-2025-13-5-25-40, https://www.elibrary.ru/JKQMQM

Прозрачность финансовой деятельности: Авторы не имеют финансовой заинтересованности в представлен-
ных материалах или методах.

Авторы заявляют об отсутствии конфликта интересов.

https://doi.org/10.32362/2500-316X-2025-13-5-25-40
https://doi.org/10.32362/2500-316X-2025-13-5-25-40
https://www.elibrary.ru/JKQMQM

28

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

prevention system (IPS) works through a blockchain
consortium of validators, while at the second stage, an
intrusion detection system (IDS) uses deep learning
models for analyzing network traffic and detecting
threats. The blockchain ensures security of data transfer
between network nodes and controls access to resources
of IoT network using intellectual contracts, which are
used to determine actions on attack detection and threat
prevention. The attack prevention system in a blockchain
consortium uses a consensus algorithm to test suspicious
traffic. However, the significant computational resources
required for the operation of blockchain system and deep
neural networks may limit its operability in devices with
limited computational possibilities in IoT networks.

Ipole-Adelaiye et al. [4] proposed a method for
detecting multi-vector attacks (MVA) using a multilayer
perceptron (MLP) approach to analyze network traffic
by means of machine learning for detecting various
attack vectors. In particular, network data from packet
capturing (PCAP) are analyzed to determine anomalous
patterns in the behavior of network compounds. The
method uses neural networks for data classification
and subsequent analysis to increase attack detection
accuracy. The MLP, which represents the main
component of the proposed system, consists of an
input layer, a hidden layer, and an output layer. While
the MLP method is suitable for the problems where
a high detection accuracy is important, faster models
can be used for networks with limited computational
resources.

Pakmehr et al. [5] analyze various methods for
detecting DDoS attacks on IoT networks with an
emphasis on features and challenges that emerge
when applying these methods to IoT networks.
The authors reviewed several categories of attack
detection methods, including signature, anomalous,
and hybrid approaches. The mathematical tool
includes algorithms based on machine learning, such
as Support Vector Machine (SVM), Decision Trees,
K-Nearest Neighbors (KNN), and Random Forest.
These algorithms are used to classify network traffic
and separate anomalous patterns characteristic of
DDoS attacks. Although the proposed approaches
more efficiently cope with high-volume and various
attacks on IoT devices, their efficiency is limited by the
complexity of refining the models and the necessity of
large computational resources.

Alhakami [6] proposed a mathematical tool for
estimating invasion detection methods under Gen V Multi-
Vector Attacks. The method is based on a combination
of two methods: Fuzzy Analytic Hierarchy Process
(Fuzzy AHP) and Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS). These methods
allow the estimation of various criteria of efficiency of
attack detection systems: detection accuracy, adaptivity,

scaling, effect on resources, detection time, and
automation. A special attention is made to such aspects
as adaptation to new threats, the possibility of operating
in scaling networks, and the minimization of loading
resources at high automation and rapid response.

Saiyed and Al-Anbagi [7] propose an approach for
detecting multi-vector DDoS attacks on IoT networks
using deep ensemble learning with pruning. Saiyed
and Al-Anbagi presented the Deep Ensemble learning
with Pruning (DEEPShield) system, which combines
the CNN and LSTM networks for analyzing network
traffic and detecting both high-volume, and low-
volume DDoS attacks. The mathematical tool is based
on using an ensemble approach, where CNN extracts
spatial signs from network traffic, and LSTM is used
to analyze time dependencies. The DEEPShield
system demonstrates a high (>90%) accuracy of attack
detection and reduces prediction time in comparison
with similar models.

Doe et al. [8] describe a hybrid model for analyzing
threats and classifying attacks in IoT networks using
deep learning and adaptive optimization algorithm
Mayfly (LAMOA11). The model tends to the detection
of routing attacks on IoT networks (sinkhole, wormhole,
black hole, and Sybil), which significantly reduce
their productivity and security. The model is based
on recurrent neural network with long short-term
memory for processing time series of network traffic
and classification of attacks with the Mayfly adaptive
algorithm for optimizing of model hyperparameters.
The model, which demonstrates a high ability to exact
classification of various types of attacks, is an efficient
solution for ensuring security of IoT networks; however,
its complexity and computational costs may limit its
use in networks with limited sources, thus requiring its
further optimization.

Aguru and Erukala [9] propose a lightweight
framework for detecting multi-vector DDoS attacks
on mobile medicine networks based on IoT using deep
learning. Here, the focus on accuracy and efficiency
aligns with the purposes of the proposed model and
underscores the need for adaptation of detection methods
to the specificity of mobile IoT devices, which makes
their operation actual for further research in this area.

Petrenko et al. [10] present a method for detecting
and counteracting multi-vector threats on decentralized
IoT systems that emphasizes the necessity of complex
security strategies. The authors underline the importance
of integrating various protection methods, including
machine learning and blockchain technologies.

The works [11–15] compare approaches to
common mitigation of attacks on cloud and fuzzy

11  Learning-based Adaptive Mayfly Optimization
Algorithm.

29

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

computations, which may improve the scalability of the
model developed in the work, Leng et al. [11] propose
methods for improving the scalability and efficiency of
protection of IoT networks, which is an important aspect
of ensuring security in conditions of growing number
of devices and traffic volume. Ali et al. [12] describe
a method for protecting decentralized IoT networks
from multi-vector DDoS attacks using blockchain
technologies and deep learning methods. The proposed
two-stage approach combines prevention and detection
of attacks, allowing for the efficient control of network
threats and an improved level of security. Dalal et al. [13]
propose a method for detecting multi-vector attacks
based on MLP. Attention is focused on the importance
of analysis of network traffic for identifying anomalous
patterns, which is a key moment for improving attack
detection accuracy. Zahid et al. [14] review various
methods for detecting DDoS attacks on IoT networks.
The authors discuss signature-, anomalous-, and
hybrid approaches in terms of their advantages and
disadvantages in the context of IoT. Lungu et al. [15]
describe a mathematical tool for estimating invasion
detection methods in conditions of fifth-generation
multi-vector attacks. By combining decision-making
methods, the efficiency of attack detection systems can
be estimated, including accuracy and adaptivity.

To construct a simulation model of a scalable
method of detection of multi-vector attacks taking into
account the limitations of computational and information
resources of IoT devices, the following three most
suitable models were chosen:
(1)	 Deep Ensemble Learning with Pruning method [7]

using a combination of CNN and LSTM for
analyzing network traffic and pruning to reduce
computational costs.

(2)	 Threat Analysis model [8] using LSTM for
analyzing routing attacks on IoT networks with
adaptive optimization of hyperparameters by the
Mayfly algorithm.

(3)	 Blockchain-based Threat Intelligence Framework
method [3] combining blockchain technology with
deep learning for protection of IoT networks from
multi-vector DDoS attacks.

2. SIMULATION MODEL OF SCALABLE METHOD
OF DETECTING MULTI-VECTOR ATTACKS
TAKING INTO ACCOUNT LIMITATIONS OF
COMPUTATIONAL AND INFORMATIONAL

RESOURCES OF IoT DEVICES

The developed model, which should detect multi-
vector attacks with high accuracy while minimizing
computational costs and taking into account limitations
inherent in IoT devices, must be suitable for scaling in
large decentralized IoT networks.

The simulation model is built from the following
main components:
(1)	 CNN + LSTM/GRU network traffic analysis module.
(2)	 Mayfly algorithm for adaptive optimization of

hyperparameters.
(3)	 Proof of Voting (PoV) blockchain-oriented

consensus mechanism for decentralized verification.
(4)	 Neuron pruning for reducing computational costs.

Let us consider these components in more detail.

2.1. CNN + LSTM/GRU network traffic
analysis module

The module for network traffic analysis and detection
of anomalies in data sequence uses a hybrid architecture
of CNN and LSTM (or GRU to reduce computing costs),
where:

•	 The CNN processes spatial signs of network traffic.
Input data are represented as a multidimensional
tensor, where each element characterizes network
packets (e.g., time, size, protocol type). Convolutional
layers separate spatial patterns in traffic;

•	 The LSTM (or GRU) analyzes time dependencies.
This helps detect complex multi-vector attacks,
which manifests themselves on different time range.
Long Short-Term Memory shares information on the
previous states of traffic and helps predicting future
events, which is important for detecting long-term
attacks, such as DDoS.
The network traffic analysis module in the simulation

model is based on a hybrid architecture, which combines
convolutional neural networks for analysis of spatial
dependencies of network traffic and recurrent neuronal
networks (LSTM or GRU) for analysis of time dependencies.
Such a structure efficiently analyzes multi-vector attacks,
which may reveal themselves through complex anomalies
in spatial and time dependencies of network traffic.

The convolutional neural network is used to
separate spatial signs from network traffic represented
by multidimensional data (tensor). The input traffic,
including such parameters as time steps, packet size,
protocol type, IP addresses, and other metrics, is
transformed into a tensor of dimension X ∊ ℝh×w×c, where
h is the tensor height (number of packets or time steps),
w is the tensor width (number of signs or characteristics
per packet), and c is the number of channels (e.g., this
may be separation by protocols of data types).

The man convolutional equation is written as

	 , , , , , ,
1 1

,+ +
= =

= +∑ ∑
k kh w

i j k i m j n c m n k k
m n

bY X W � (1)

where Xi, j, c is the input tensor for position (i, j) in the
channel c, Wm, n, k is the convolutional filter of sizes

30

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

hk × wk for the channel k, bk is the bias for the channel k,
and Yi, j, k is the convolutional result in the channel k.

Convolution (1) is followed by applying an
activation function for increasing nonlinearity:

Zi, j, k = ReLU(Yi, j, k) = max(0, Yi, j, k).

Here, ReLU (Rectified Linear Unit) is one of the
most popular activation functions, which retains only
positive values.

Convolution network separates spatial patterns
in network traffic data, such as packet frequency and
correlation of various traffic parameters. After spatial signs
are isolated using CNN, they are transferred to LSTM to
analyze time dependencies. Long Short-Term Memory
takes into account the time behavior of traffic and helps
isolating multi-vector attacks, which may show through
sequential changes in network behavior.

Let us consider the main components of LSTM,
(1)	 Input gates controls the choice of a new input state

to refresh state of memory. The input gates at time
t are activated as

	 it = σ(Win ∙ [ht−1, xt] + bin), � (2)

where xt is the input vector at time t (spatial signs
isolated from CNN); ht−1 is the hidden state at the
previous time step, Win is the weight matrix for the
input gate, bin is the bias vector for the input gate, and
σ is a sigmoid normalizing values on the interval [0, 1].

(2)	 Forgetting gates determine the part of the previous
state that should be preserved. The function ft for
activation of forgetting gates can be written as

	 ft = σ(Wf ∙ [ht−1, xt] + bf),� (3)

where Wf is the weight matrix for the forgetting
gate; bf is the bias vector for the forgetting gate.

(3)	 State of memory Ct is refreshed at each time step
taking into account new information as:

	 Ct = ft Ct−1 + it tanh(Wc ∙ [ht−1, xt] + bc), � (4)

where Ct−1 is the previous state of memory; Ct is
the new state of memory; ft is the forgetting gates;
it is the input gates; tanh is the hyperbolic tangent,
which is a function of activation used for refreshing
state of memory; Wc is the weight matrix for state of
memory; [ht−1, xt] is the concatenation of the hidden
state at the previous step and the current input vector;
and bc is the bias vector for refreshing state of memory;
the index c indicates the collection of data to memory.

(4)	 Output gates control the part of state of memory that
should be used for refreshing the hidden state. The
output gates are activated as follows:

	 ot = σ(Wo ∙ [ht−1, xt] + bo), � (5)

where ot is the activation function of the output gates, σ is
the activation sigmoid, Wo is the weight matrix for the
output gates, and bo is the bias vector for the output gates.
The new hidden state ht is calculated as

	 ht = ot tanh(Ct), � (6)

where ht is the hidden state at time t, which is used
for final classification of network traffic; and Ct is
the current state of memory.
Instead of LSTM, GRU can be used, which is

modification that uses less computational costs.
GRU combines forgotten and input gates into a single
refreshing gate, which reduces computational costs and
improves model operation under limited resources.

Let us consider the main components of GRU.
(1)	 Refreshing gates:

	 zt = σ(Wz ∙ [ht−1, xt] + bz). � (7)

Here, zt is the activation of the refreshing gates, which
controls how strongly the current state affects the
previous one; the index z shows a refreshing gate (zero).

(2)	 Removal gates:

	 rt = σ(Wr ∙ [ht−1, xt] + br). � (8)

Here, rt is the activation of the removal gates, which
controls how strongly the previous state should be
forgotten; the index r indicates the reset gate.

(3)	 Refreshing of the hidden state:

	 ht = (1 – zt) ht−1 + zt tanh(Wh[rtht−1, xt] + bh), � (9)

where ht is the refreshed hidden state at time t, and
Wh is the weight matrix for refreshing the hidden
state; the index h displays the gate of hidden state.
Recurrent neural network GRU uses fewer

parameters than LSTM, which makes it more suitable for
problems requiring smaller computational costs, such as
operation under limited resources of IoT devices.

After processing of the CNN and LSTM/GRU
data, the model uses a fully connected layer for final
classification of traffic. This layer calculates the
probabilities that data belongs to one of the classes, e.g.,
normal traffic or attack:

	 Pattack = Softmax(WouthT + bout), � (10)

where Pattack is the probability that the input traffic is
attack, Wout is the outer layer weights, hT is the hidden
state at the last time step, bout is the outer layer bias, and
Softmax normalizes the outer probability values.

31

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

The main variables of the model are the input tensor
X ∊ ℝh×w×c of network traffic; the weight matrices W
of layers (CNN, LSTM/GRU); the bias vectors b of
layers (CNN, LSTM/GRU); the input (it), forgotten (ft), and
output (ot) gates to LSTM, respectively; the refreshing (zt)
and removal (rt) gates to GRU, respectively; the hidden
state ht at time t; the state of memory Ct in LSTM; and the
probability Pattack that the traffic is attacking.

The network traffic analysis module based on
a hybrid architecture of CNN + LSTM (or GRU)
combines spatial and time dependencies of network
data. Such architecture efficiently detects multi-vector
attacks on IoT networks, which is particularly important
for systems with limited computational resources.

The model operates as follows.
(1)	 The input traffic is transformed into

a multidimensional tensor, which enters
convolutional layers for isolating signs.

(2)	 The isolated signs enter the LSTM/GRU for
analyzing time dependencies.

(3)	 The model classifies the traffic as normal or attacking.

2.2. Adaptive optimization of hyperparameters
using the Mayfly adaptive algorithm

To improve the efficiency of the model and tune it to
specific network conditions (e.g., data volume or type of
attacks), we use the Mayfly adaptive algorithm [8]. The
Mayfly algorithm helps to automatically find the optimal
hyperparameters of the model, such as:

•	 number of layers in CNN and LSTM;
•	 number of filters and neurons in each layer;
•	 model learning rate.

The Mayfly adaptive algorithm accelerates
model tuning and ensures its optimal productivity
without necessity of manual tuning. The algorithm
uses evolutionary methods for searching for optimal
parameters and is adapted during model learning.

The main steps of the Mayfly adaptive algorithm are
the following:

1.	Population initialization.
2.	Males and females: separation into two groups with

different search strategies.
3.	Global and local search: search for the best solutions

by males and females.
4.	Evolution and refreshment of rates and positions.
5.	Rendezvous and reproduction.

The main variables and parameters of the algorithm
are the following.

N—number of individuals in the population;
m
ix —position of male i in solution

space (hyperparameter value);
f
ix —position of female I;
m
iv —male velocity;
f
iv —female velocity;

α, β, γ—male and female motion control
coefficients (inertia, acceleration, and interaction,
respectively);

gbest—global best solution found by all males and
females;

pbest—personal best solution found by male or female;
λ—attraction coefficient for rendezvous of males

and females;
∊—random bias affecting mutation in search.

2.2.1. Population initialization
The Mayfly algorithm begins with random

initialization of the initial population of males and
females (hyperparameters) in search space. Each male
or female is a model hyperparameter vector

xi = [xi1, xi2, …, xid],

where d is the hyperparameter space dimensionality (e.g.,
number of layers or neurons, training rate, etc.).

The position xi of each male or female in
hyperparameter space is initialized randomly:

m f
min max(0), (0) Uniform(,),i ix x x x

where xmin and xmax are the hyperparameter space
boundaries, and Uniform(xmin, xmax) is the function of
random sampling from the interval [xmin, xmax].

2.2.2. Refreshment of male velocity and position
Males find solutions in global space, refreshing

their position based on personal best solution pbest and
global best solution gbest. The male position refreshment
velocity is calculated as:

m m m
1 1 best,

m
2 2 best,

(1) () (())

(()),

+ = α + β - +

+ β -

i i i i

i i

t t r p t

r g t

v v x

x

where α is the inertia coefficient (which controls
how strongly the velocity of the previous step affects
the current position); β1 and β2 are the acceleration
coefficients, which control the effect of the personal and
global bets solutions on the velocity refreshment; and
r1 and r2 ∼ Uniform(0, 1) are random values, which
ensure random bias in search.

The position of each male is refreshed taking into
account its new velocity:

m m m(1) () (1).+ = + +i i it t tx x v

2.2.3. Refreshment of female
velocity and position

Females perform local search, refreshing their
positions based on the distance to males. The female

32

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

position refreshment velocity is calculated taking into
account the interaction with males:

f m f(1) (() ()) ,+ = l - +∈i i it x t x tv

where λ is the attraction coefficient between males
and females, and ∊ is a random deviation for ensuring
diversity of solutions.

The positions of females is refreshed as follows:

f f f(1) () (1).+ = + +i i it t tx x v

2.2.4. Evaluation of solutions
Each male or female is evaluated using

a fitness function, which may be related to model,
accuracy, learning time, model complexity, and other
parameters. The fitness function F(xi) for each male or
female is calculated as:

F(xi) = Evaluation Model(xi),

where xi are the hyperparameters represented by
male or female, and Evaluation Model is a function
estimating the model productivity at the given
hyperparameters.

2.2.5. Rendezvous and reproduction

After the velocities and positions are refreshed,
males and females make a rendezvous, which models
reproduction in the algorithm. When males and females
become close enough, there are crossing over and
mutation:

•	 crossing over transforms part of genetic
information (hyperparameters) from males to
females:

m f
new (1) ,= l + - li ix x x

where xnew is a new value (position) of male or
female as acquired by crossing over, m

ix is the
current position of male i, f

ix is the current position
of female i, and λ is a coefficient determining the
weight of influence of female in the new
state (λ typically ranges from 0 to 1).

•	 mutation randomly changes some parameters with
probability pmut.

2.2.6. Completion criterion

The Mayfly algorithm performs until one of
the following conditions is used: the maximum
number Tmax of iterations has reached, or the fitting
function is not improved for several consecutive
operations.

2.3. Decentralized verification mechanism
based on blockchain technology

The security and reliability of the system
under decentralized IoT networks are ensured by
PoV blockchain-oriented consensus mechanism [3]. The
main functions of this component are the following:

•	 decentralized verification of attack data, by which
several network nodes analyze network traffic and send
information on possible attacks to distributed ledger;

•	 validation of blocks occurs through polling of
validating nodes: if more than 50% nodes support
attack, the information about it is written in the
distributed ledger, and dangerous IP addresses are
blocked through action modules.
The decentralized verification module uses

blockchain technologies for ensuring data security and
preventing attacks in IoT networks. This module operates
based on PoV consensus mechanism, which allows
network nodes (validators) to vote for data blocks on
traffic, attacks, or state of network. Blockchain ensures
protection from deception of data, decentralized storage,
and automatic performance of such actions as block of
harmful IP addresses through action modules.

The main elements and variables are the following.
B—data block containing information on network

traffic, detected attacks, or refreshing states of network;
N—number of nodes (validators) in blockchain network;
Vi—voice of validator i for acceptance or rejection

of block;
Pvalid—probability that the block is valid;
TB—block validation time;
AM—Action Module, which contains data on

attacks and blocks of IP addresses.
This subsection presents key steps of processing

network traffic and ensuring security in blockchain
system. These steps describe how network nodes interact
for detecting anomalies, data verification, and automatic
blocking of suspicious IP addresses. Every step plays an
important rope in creating a reliable and efficient system
of protecting from cyberattacks, ensuring data integrity
and rapid response to threats.

The steps of processing network traffic and ensuring
security in blockchain system are the following:

Step 1. Formation of data block.
Each blockchain network node processes the

entering network traffic and, if there is an anomaly or
suspicious activity (e.g., multi-vector attack), forms data
block B. This block includes the following elements:

B = {Block ID, Data, Previous Hash, Timestamp,
Signature},

where Block ID is the unique block identifier, Data
is the information on traffic and possible attacks

33

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

(e.g., IP addresses, type of attack, and timestamps),
Previous Hash is the hash of the previous block in
blockchain for maintaining continuous chain, Timestamp
is the block formation time, and Signature is the digital
signature of the node that formed the block.

Step 2. PoV consensus mechanism.
After the block is formed, it is transferred to other

network nodes for verification using the PoV consensus
mechanism.

The block is validated by voting of network nodes in
the following order:

•	 each node analyzes the data block B, tests its integrity
and reliability, and then sends its voice Vi (voting
may be binary: Vi = 1 for acceptance of block and
Vi = 0 for rejection of block);

•	 the probability that the block is valid is calculated
as

1
valid .==

∑
N

i
i

V
P

N

If Pvalid ≥ 0.5 (most nodes support the block),
then the block is considered valid and is added to the
distributed ledger, and if Pvalid < 0.5, then the block is
rejected.

Step 3. Refreshing of distributed ledger
After reaching consensus and supporting block B, it

is added to the distributed ledger. Each item in the
distributed ledger is related to the previous block through
the Previous Hash . Which ensures continuous and
invariable data chain. A new block is added to the
distributed ledger:

Bnew = {Hash(Bprev), Datanew, Timestampnew,
Signaturenew},

where Hash(Bprev) is the hash of the previous block,
which guarantees the integrity of the entire chain.

Step 4. Using action modules for automatic blocking
of IP addresses.

Blockchain system uses action modules for automatic
actions when detecting attack. Action modules Action
modules automatically block IP addresses, send notice,
and refresh blacklists in network. The structure of action
module can have the following form:

AM = {Source IP (SIP), Destination IP (DIP),
Signature, Blacklisted IP, Attack Label},

where Source IP (SIP) is the IP address, from which
traffic enters; Destination IP (DIP) is the IP address of
target device; Signature is the digital signature of data for
information authentication; Blacklisted IP is the list of
IP addresses, which were blocked after detecting attack;

and Attack Label is the attack label, which contains type
of attack (e.g., DDoS, SQL injection, multi-vector attack).

Step 5. IP address blocking.
Once the data block on attack is confirmed and

added to blockchain, action module automatically blocks
harmful IP addresses in network. For example, if DDoS
traffic is detected, then the IP address of the SIP
attacking device is added to the Blacklisted IP blacklist
through action module

AM(SIP) = Blacklisted IP.

These data are refreshed at every network node
through distributed blockchain structure, which
guarantees the consistency of actions of all participants.

Step 6. Block validation time.
For each block B, the block validation time TB is

calculated, which depends on the time tvote of voting of all
nodes, the time tcontract of performance of all action modules,
and the time ttransmit of block transmission between nodes:

TB = tvote + tcontract + ttransmit.

The optimization of block validation time is critical
for IoT networks with limited resources and high data
exchange rate.

2.4. Pruning

Pruning is used to reduce computational costs and
optimize model operation at low-power IoT devices.
After model learning, minor neurons and their
connections are pruned to reduce model volume without
significant impairment of its accuracy.

Pruning is performed as follows:
•	 after learning of neural network, the weights of its

connections are analyzed. If the weights are below
a given level, then the connections are pruned;

•	 the model is restarted with a reduced number
of neurons and parameters, which reduces
its computational complexity and memory
requirements.
The main idea is to prune unnecessary or minor

neurons or change weights after model learning,
insignificantly reducing its productivity.

The main elements and variables are the following:
W—weight matrix of neural network;
b—bias vector of neurons;
f(W)—activation function for network weights;
θ—threshold for weight pruning;
M—masking matrix for weight pruning;
ntotal—total number of parameters (weights) in

neural network;
npruned—number of pruned weights;
p—fraction of pruned weights or neurons.

34

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

2.4.1. Determination of significance
of weights and neurons

After the neural network is learned, it is necessary
to determine, which weights W in neural network affect
least on output values and can be pruned. This is done
by calculating the significance of each weight Wi, j. As
a measure of significance, the metric of absolute value of
weight can be used, in which the smaller the weight, the
less significant this weight for neuron activation:

	 Significance(Wi, j) = |Wi, j|. � (11)

If the weight is close to zero, then its influence on
network output is minimal, and such a weight can be pruned.

2.4.2. Pruning threshold
To determine, which weights should be pruned,

threshold θ is introduced. The weights the absolute
value of which is smaller than θ are considered minor
and removed (equated to zero 0):

	 Wi, j = 0 if |Wi, j| < θ. � (12)

The threshold θ is chosen empirically or optimized
during experiments. This threshold can be static or
dynamic, adapted by analyzing model structure.

2.4.3. Masking matrix
Lest weight pruning affect neurons that have

a significant effect on the output values of the model and
its productivity, masking matrix M is used, denoting which
weights should be retained, and which should be zeroed:

	
,

,
,

1, if | | ,

0, if | | .

≥ q=  < q

i j
i j

i j

W
M

W
 � (13)

Pruned masking matrix:

	 Wpruned = W ⊙ M, � (14)

where ⊙ is the elementwise product of the weight
matrix W and the masking matrix M. This guarantees
that only significant weights participate in computations,
and minor weights are pruned.

2.4.4. Estimation of pruned weight fraction
The fraction of pruned weights or neurons is

calculated as

	 pruned

total
,=

n
p

n
 � (15)

where npruned is the number of pruned weights, i.e.,
weights for which |Wi, j| < θ; and ntotal is the total number
of weights in the model.

2.4.5. Iterative pruning
Simple pruning threshold may be insufficiently

efficient for all network layers, especially for deep
models with numerous layers. Therefore, iterative
pruning may be used: weights are pruned not at once but
stepwise, with a gradual increase in threshold θ.

At each iteration, the weights are recalculated using
the masking matrix:

	 Wnew = Wold ⊙ M. � (16)

Then the network is relearned on new data to restore
its accuracy after pruning. This process is repeated
several times until the pruned weight fraction reaches
the desired level p.

2.4.6. The main steps of the developed simulation
model and metric for estimating the model quality

after weight pruning
The main steps of the model operation are the following:

(1)	 traffic analysis using CNN + LSTM for detecting
spatiotemporal signs and identifying anomalies;

(2)	 model optimization: the Mayfly algorithm
automatically tunes model hyperparameters
depending on the conditions of network and data,
which ensures its adaptability;

(3)	 suspicious IP addresses and traffic are verified and
blocked through blockchain consortium. If the
attack on IP addresses is confirmed, they are blocked
through action modules;

(4)	 neuron pruning: after the initial learning and
verification of the model, neurons are pruned
to reduce computational complexity and model
adaptation to resources of IoT devices.
After pruning, it is important to estimate the changes

in model productivity and resource intensity. The main
metrics of model quality after weight pruning are the
following:
(1)	 the fraction of accurate predictions among the

total amount of predictions (accuracy of correct
predictions):

	 1
TP TNAccuracy ,

TP +TN + FP + FN
+

= =E � (17)

where TP is the number of true positive
predictions (correct predictions of attacks), TN is
the number of true negative predictions (correct
predictions of normal traffic), FP is the number of
false positive predictions (false alerts), and FN is the
number of false negative predictions (lost attacks);

(2)	 recall:

	 2
TPRecall ,

TP + FN
= =E � (18)

35

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

which determines the model ability to detect all
attacks in a sample;

(3)	 precision (fraction of true positive predictions
among all positive predictions (accuracy of true
positive predictions)):

	 3
TPPrecision ,

TP + FP
= =E � (19)

which determined how much model predictions of
positive classes are correct;

(4)	 F1 metric:

	 2 3
4

2 3
2 ,=

+
E E

E
E E

 � (20)

which is a harmonic mean between recall and
precision;

(5)	 time of data processing and performing model
predictions:

	 E5 = Tpruned = Toriginal(1 – p), � (21)

where Tpruned is the computational time after
pruning, Toriginal is the computational time by the
initial model, and p is the fraction of pruned neurons;

(6)	 memory usage (reduction of memory usage after
weight pruning):

	 E6 = Mpruned = Moriginal(1 – p), � (22)

where Mpruned is the memory required for storing
pruned model, and Moriginal is the memory necessary
for storing the initial model.

3. IMPLEMENTATION AND EXPERIMENT

3.1. Design of experiment

In this section, we experimentally tested the developed
simulation model of detecting multi-vector attacks
taking into account the limitations of computational and
informational resources of IoT devices.

The experiment uses CIC IoT Dataset 2023, which
contains data of network traffics, both normal, and
attacking, with various characteristics and signs, such as:

•	 IP addresses (Source/Destination);
•	 ports (Source/Destination);
•	 connection time;
•	 packet size;
•	 protocols (TCP12, UDP13, HTTP, DNS);
•	 attack mark (e.g., DDoS, SQL injection, Brute

Force).

12  Transmission Control Protocol.
13  User Datagram Protocol.

The dataset is divided into several classes:
•	 normal traffic;
•	 attacking traffic (various types of attacks).

The experiment compares the results of the developed
simulation model with several similar methods used to
detect attacks on IoT networks.

The CIC IoT Dataset 2023 data were normalized
using Min-Max Scaling to reduce all signs to the
range [0, 1]. Outliers were removed by Interquartile
Range (IQR) method, and new signs were generated by
aggregation of time characteristics of traffic (e.g., mean
number of packets in 10 s).

The testing was performed on a workstation
based on Macbook Pro notebook (Apple Inc., USA)
with M2 Pro processor (includes 12 processor
cores (8 performance cores and 4 efficiency cores),
19 graphics engines, and 16-core neural coprocessor)
and16-GB random access memory with a throughput
efficiency of about 200 GB/s.

3.2. Structure of experiment

The experiment was performed in several steps:
(1)	 Data preparation, at which the CIC IoT Dataset 2023

data are divided into learning and testing samplings
in the ratio 70 : 30. Then, the data are preliminarily
processed: signs are normalized, outliers are
removed, and new signs are generated (if necessary).

(2)	 Model learning, at which the proposed model
is learned based on the hydride architecture
CNN + LSTM/GRU using neuron pruning to reduce
computational costs.
The model hyperparameters are optimized using the

Mayfly algorithm.
For comparison, other models are also learned, such

as Random Forest, SVM, Deep Learning (MLP).
The processing time of a single data packet is found as

the sum of convolution time (1), LSTM/GRU processing
time (2)–(9), and classification time (10). Owing to neuron
pruning (11)–(16), the model significantly reduces the
number of parameters, which decreases the computational
costs and improves productivity on devices with limited
resources. This makes it possible to efficiently use the
model under real conditions, such as real-time monitoring
systems, where fast response and minimum memory
consumption are important. The quality of the simulation
model is estimated using metrics (17)–(22).

3.3. Analysis of the obtained results

The efficiency of the proposed model was estimated in
experimental studies. Table estimates the efficiency using
evaluation metrics (17)–(22) of various models, including
the proposed model based on the CNN + LSTM/GRU
hybrid architecture using neuron pruning.

36

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

Table. Experimental results

Model
Evaluation metrics

E1, % E2, % E3, % E4, % E5, ms E6, MB

Random Forest 96.5 95.7 97.1 96.4 35 220

SVM 94.3 92.6 94.5 93.5 50 250

Deep Learning (MLP) 97.8 97.2 98.0 97.6 20 210

Simulation model CNN + LSTM/GRU 99.1 99.3 98.9 99.1 12 180

Figure 1 compares the results of operation of
the proposed simulation model and its analogs
in accordance with evaluation metrics (17)–(20).
Figure 1 shows that the CNN + LSTM/GRU model
significantly exceeds the other models in all presented
metrics, which confirms its high efficiency in detecting
multi-vector attacks.

Figure 2 compares the results of operation of the
proposed simulation model and its analogs in accordance
with evaluation metrics E5 (21). Figure 2 shows that
the model CNN + LSTM/GRU has the minimum
data processing time and the minimum prediction

performance time (12 ms), which makes it particularly
suitable for real-time use, whereas the other models
require much more time.

Figure 3 compares the results of operation of the
proposed simulation model and its analogs in accordance
with quality metric E6 (22). Figure 5 shows that the
model CNN + LSTM/GRU requires the minimum
memory volume (180 MB) for processing the input data
of 1 million examples with 10 signs, which makes it more
efficient for using on devices with limited computational
resources in comparison with the other models, such as
Random Forest and SVM.

Evaluation metrics
 Random Forest
 SVM

 Deep Learning (MLP)
 CNN + LSTM/GRU

100

98

96

94

92

90

88

%

E1 E2 E3 E4

Fig. 1. Comparison of the results of operation of the developed simulation model CNN + LSTM/GRU
and its analogues in accordance with metrics E1 (17) – E4 (20)

Ti
m

e,
 m

s

60

50

40

30

20

10

0
Random

Forest
Deep Learning

(MLP)
Simulation

model
CNN + LSTM/GRU

Support Vector
Machine (SVM)

Fig. 2. Comparison of the results of operation of the developed simulation model CNN + LSTM/GRU
and its analogues in accordance with metric E5 (21)

37

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

M
em

or
y

vo
lu

m
e,

 M
B

300

250

200

150

100

50

0
Random

Forest
Deep Learning

(MLP)
Simulation

model
CNN + LSTM/GRU

Support Vector
Machine (SVM)

Fig. 3. Comparison of the results of operation of the developed simulation model CNN + LSTM/GRU
and its analogues in accordance with metric E6 (22)

The performed experiment confirms the following:
(1)	 The developed simulation model attained high

accuracy of detecting attacks at a level of 99.1%,
which suggests its ability to efficiently identify
both known and new types of attacks in real time.
Thus, the proposed architecture based on the
CNN + LSTM/GRU hybrid model can be successfully
applied in the context of analyzing network traffic.

(2)	 The F1 metric of the developed simulation model
is 99.1%, which indicates high balance between
precision (19) and recall (18). This means that the
model not only accurately identifies attacks, but also
minimizes the number of false alarms and miss.

(3)	 The request processing time in the proposed
simulation model at hardware resources stated in
3.1 of this work is reduced to 12 ms, making this
model particularly useful for systems requiring fast
response, such as real-time monitoring systems.
This represents a significant advantage over the
other models, which require more processing time.

(4)	 The developed simulation model uses only 180 MB
memory, making it suitable for implementing on
devices with limited computational resources. This
is particularly important for IoT devices, which are
often limited in memory and computational power.

(5)	 Neuron pruning significantly reduced the number of
model parameters from 1.5 million to 300 thousand,
which, in turn, decreased computational costs by 80%
and improved productivity. This confirms that model
optimization approaches contribute significantly to its
successful use under limited resources.

CONCLUSIONS

In this work, we have proposed a simulation model
of a scalable method for detecting multi-vector attacks
on IoT devices that takes into account the limitations of
computational and informational resources. The creation
of an efficient solution capable of detecting attacks with
high accuracy is a key objective given the growing
security threats in IoT.

The proposed model is based on a hybrid architecture
of neural networks that combines convolutional neural
networks CNN for analyzing spatial dependencies and
long short-term memory networks LSTM for analyzing
time dependencies of network traffic. An important aspect
is pruning, which significantly reduces the number of
model parameters to decrease computational costs. The
use of blockchain technologies with a PoV consensus
mechanism ensures data security and decentralized
verification, which is critically important for protecting
IoT networks from multi-vector attacks.

The experimental testing using the CIC IoT Dataset 2023
dataset demonstrated the high efficiency of the proposed
model. The achieved attack detection accuracy 99.1%
confirms its ability to exactly identify both known and
new types of attacks in real time. The F1 metric of 99.1%
indicates a balance between precision and recall, which is
critically important for cybersecurity systems in which both
false alarms and unidentified attacks should be minimized.
In addition to high accuracy, the request processing time
was reduced to 12 ms. This allows the model to function
efficiently under rapid response conditions such as real-
time monitoring systems. Memory use was also optimized
to only 180 MB, which makes it suitable for devices with
limited computational resources.

Thus, the developed simulation model exceeds the
existing solutions in key metrics, such as precision,
processing time, and memory use. The high efficiency
of the model during multi-vector threats to IoT is
ensured by its hybrid architecture, neuron pruning, and
decentralized verification.

This work opens new horizons for further research
in cybersecurity that will lead to efficient solutions for
protecting IoT networks from complex cyberthreats.
Future studies should aim to integrate additional
machine learning and deep learning methods for
increasing the accuracy and stability of the model
to new types of attacks. It is also worth considering
the possibility of optimizing algorithms to reduce
computational costs and increase data processing rates.
Under current conditions of increased device numbers

38

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

and traffic volumes, it becomes crucial to continue to
improve the scalability and stability of blockchain-
oriented solutions.

ACKNOWLEDGMENTS

This research was supported by the Information
Security grant from the Moscow Technical University of
Communications and Informatics (MTUSI) (agreement
No. 40469/17-23-K, “Development of an intrusion
detection method using multi-vector attack scenarios in
a decentralized IoT environment.”

Authors’ contributions
V.I. Petrenko—research idea, planning the study, and

scientific editing the article.
F.B. Tebueva—research idea, planning the study, and

scientific editing the article.
M.G. Ogur—conducting the research, performing

the experimental part of the work, analysis of the obtained
data, formulating the results, and writing the text of the
article.

G.I. Linets—consultations on conducting the research
and scientific editing the article.

V.P. Mochalov—consultations on conducting the
research and scientific editing the article.

REFERENCES

	 1.	 Sen Ö., Ivanov B., Henze M., Ulbig A. Investigation of Multi-stage Attacks and Defense Modeling for Data Synthesis.
In: Proceedings of the International Conference on Smart Energy Systems and Technologies (SEST). IEEE; 2023. P. 1–12.
https://doi.org/10.1109/SEST57387.2023.10257329

	 2.	 Lysenko S., Bobrovnikova K., Kharchenko V., Savenko O. IoT Multi-Vector Cyberattack Detection Based on
Machine Learning Algorithms: Traffic Features Analysis, Experiments, and Efficiency. Algorithms. 2022;15(7):239.
https://doi.org/10.3390/a15070239

	 3.	 Aguru A., Erukala S. OTI-IoT: A Blockchain-based Operational Threat Intelligence Framework for Multi-vector DDoS
Attacks. ACM Trans. Internet Technol. 2024;24(3):15.1–15.31. https://doi.org/10.1145/3664287

	 4.	 Ipole-Adelaiye N., Tatama F.B., Egena O., Jenom M., Ibrahim L. Detecting Multi-Vector Attack Threats Using Multilayer
Perceptron Network. IRE Journals. 2024;8(1):119–123.

	 5.	 Pakmehr A., Aßmuth A., Taheri N., Ghaffari A. DDoS attack detection techniques in IoT networks: a survey. Cluster Comput.
2024;27(4):14637–14668. https://doi.org/10.1007/s10586-024-04662-6

	 6.	 Alhakami W. Evaluating modern intrusion detection methods in the face of Gen V multi-vector attacks with fuzzy
AHP-TOPSIS. PLoS One. 2024;19(5):e0302559. https://doi.org/10.1371/journal.pone.0302559

	 7.	 Saiyed M.F., Al-Anbagi I. Deep Ensemble Learning With Pruning for DDoS Attack Detection in IoT Networks. IEEE Trans.
Machine Learning Commun. Networks. 2024;2:596–616. https://doi.org/10.1109/TMLCN.2024.3395419

	 8.	 Liebl S. Threat Modelling for Internet of Things Devices. Research Report 2023 of the Technical University OTH
Amberg-Weiden. 2023. Available from URL: https://www.researchgate.net/publication/369488078. Accessed
February 25, 2025.

	 9.	 Aguru A.D., Erukala S.B. A lightweight multi-vector DDoS detection framework for IoT-enabled mobile health informatics
systems using deep learning. Inf. Sci. 2024;662:120209. https://doi.org/10.1016/j.ins.2024.120209

10.	 Petrenko V.I., Tebueva F.B., Ogur M.G., Linets G.I., Mochalov V.P. Methodology for detecting and countering multi-vector
threats to information security of a decentralized IoT system. Int. J. Open Inf. Technol. 2025;13(1):13–24 (in Russ.).

11.	 Leng S., Guo Y., Zhang L., Hao F., Cao X., Li F., Kou W. Online and Collaboratively Mitigating Multi-Vector DDoS
Attacks for Cloud-Edge Computing. In: ICC 2024 – International Conference on Communications. 2024. P. 1394–1399.
https://doi.org/10.1109/ICC51166.2024.10623052

12.	 Ali M., Saleem Y., Hina S., Shah G.A. DDoSViT: IoT DDoS attack detection for fortifying firmware Over-The-Air (OTA)
updates using vision transformer. Internet of Things. 2025;30:101527. https://doi.org/10.1016/j.iot.2025.101527

13.	 Dalal S., Lilhore U.K., Faujdar N., Simaiya S., et al. Next-generation cyberattack prediction for IoT systems: leveraging
multi-class SVM and optimized CHAID decision tree. J. Cloud Comput. 2023;12:137. https://doi.org/10.1186/s13677-023-
00517-4

https://doi.org/10.1109/SEST57387.2023.10257329
https://doi.org/10.3390/a15070239
https://doi.org/10.1145/3664287
https://doi.org/10.1007/s10586-024-04662-6
https://doi.org/10.1371/journal.pone.0302559
https://doi.org/10.1109/TMLCN.2024.3395419
https://www.researchgate.net/publication/369488078
https://doi.org/10.1016/j.ins.2024.120209
https://doi.org/10.1109/ICC51166.2024.10623052
https://doi.org/10.1016/j.iot.2025.101527
https://doi.org/10.1186/s13677-023-00517-4
https://doi.org/10.1186/s13677-023-00517-4

39

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

14.	 Zahid F., Funchal G., Melo V., Kuo M.M.Y., et al. DDoS attacks on smart manufacturing systems: A cross-domain taxonomy
and attack vectors. In: 2022 20th IEEE International Conference on Industrial Informatics (INDIN). 2022. P. 214–219.
https://doi.org/10.1109/INDIN51773.2022.9976172

15.	 Lungu N., Dash B.B., De U.C., Dash B.B., et al. Multi-vector Monitoring, Detecting and Classifying GPU Side-Channel
Attack Vectors on a Secure GPU Execution Framework. In: 2024 8th International Conference on I-SMAC (IoT in Social,
Mobile, Analytics and Cloud). 2024. P. 500–505. https://doi.org/10.1109/I-SMAC61858.2024.10714895

About the Authors

Vyacheslav I. Petrenko, Сand. Sci. (Eng.), Associate Professor, Head of the Department of Organization and
Technology of Information Security, Prof. Nikolay Chervyakov Faculty of Mathematics and Computer Sciences,
North-Caucasus Federal University (1, Pushkina ul., Stavropol, 355017 Russia). E-mail: vipetrenko@ncfu.ru.
Scopus Author ID 57189512011, ResearcherID A-3196-2017, RSCI SPIN-code 3923-4295, https://orcid.org/0000-
0003-4293-7013

Fariza B. Tebueva, Dr. Sci. (Phys.-Math.), Associate Professor, Professor, Department of Computational
Mathematics and Cybernetics, Prof. Nikolay Chervyakov Faculty of Mathematics and Computer Sciences,
North-Caucasus Federal University (1, Pushkina ul., Stavropol, 355017 Russia). E-mail: ftebueva@ncfu.ru.
Scopus Author ID 57189512319, ResearcherID H-4548-2017, RSCI SPIN-code 9343-7504, https://orcid.org/0000-
0002-7373-4692

Maxim G. Ogur, Senior Lecturer, Department of Computational Mathematics and Cybernetics,
Prof. Nikolay Chervyakov Faculty of Mathematics and Computer Sciences, North-Caucasus Federal University
(1, Pushkina ul., Stavropol, 355017 Russia). E-mail: ogur26@gmail.com. ResearcherID B-1332-2017, RSCI SPIN-code
7180-6971, https://orcid.org/0000-0002-2387-0901

Gennady I. Linets, Dr. Sci. (Eng.), Professor, Department of Digital, Robotic Systems and Electronics, Institute
of Advanced Engineering, North-Caucasus Federal University (1, Pushkina ul., Stavropol, 355017 Russia). E-mail:
kbytw@mail.ru. Scopus Author ID 6506372022, RSCI SPIN-code 1452-6823, https://orcid.org/0000-0002-2279-3887

Valery P. Mochalov, Dr. Sci. (Eng.), Professor, Department of Digital, Robotic Systems and Electronics, Institute
of Advanced Engineering, North-Caucasus Federal University (1, Pushkina ul., Stavropol, 355017 Russia). E-mail:
mochalov.valery2015@yandex.ru. Scopus Author ID 57202300745, RSCI SPIN-code 8695-1648, https://orcid.
org/0000-0002-5131-5649

https://doi.org/10.1109/INDIN51773.2022.9976172
https://doi.org/10.1109/I-SMAC61858.2024.10714895
mailto:vipetrenko@ncfu.ru
https://orcid.org/0000-0003-4293-7013
https://orcid.org/0000-0003-4293-7013
mailto:ftebueva@ncfu.ru
https://orcid.org/0000-0002-7373-4692
https://orcid.org/0000-0002-7373-4692
mailto:ogur26@gmail.com
https://orcid.org/0000-0002-2387-0901
mailto:kbytw@mail.ru
https://orcid.org/0000-0002-2279-3887
mailto:mochalov.valery2015@yandex.ru
https://orcid.org/0000-0002-5131-5649
https://orcid.org/0000-0002-5131-5649

40

Russian Technological Journal. 2025;13(5):25–40

Vyacheslav I. Petrenko
et al.

Simulation model of a scalable method for detecting multi-vector attacks taking
into account the limitations of computing and information resources of IoT devices

Об авторах

Петренко Вячеслав Иванович, к.т.н., доцент, заведующий кафедрой организации и технологии защи-
ты информации, факультет математики и компьютерных наук имени профессора Н.И. Червякова, ФГАОУ ВО
«Северо-Кавказский федеральный университет» (355017, Россия, Ставрополь, ул. Пушкина, д. 1). E-mail:
vipetrenko@ncfu.ru. Scopus Author ID 57189512011, ResearcherID A-3196-2017, SPIN-код РИНЦ 3923-4295,
https://orcid.org/0000-0003-4293-7013

Тебуева Фариза Биляловна, д.ф.-м.н., доцент, профессор кафедры вычислительной математики и
кибернетики, факультет математики и компьютерных наук имени профессора Н.И. Червякова, ФГАОУ ВО
«Северо-Кавказский федеральный университет» (355017, Россия, Ставрополь, ул. Пушкина, д. 1). E-mail:
ftebueva@ncfu.ru. Scopus Author ID 57189512319, ResearcherID H-4548-2017, SPIN-код РИНЦ 9343-7504,
https://orcid.org/0000-0002-7373-4692

Огур Максим Геннадьевич, старший преподаватель, кафедра вычислительной математики и кибернетики,
факультет математики и компьютерных наук имени профессора Н.И. Червякова, ФГАОУ ВО «Северо-Кавказский
федеральный университет» (355017, Россия, Ставрополь, ул. Пушкина, д. 1). E-mail: ogur26@gmail.com.
ResearcherID B-1332-2017, SPIN-код РИНЦ 7180-6971, https://orcid.org/0000-0002-2387-0901

Линец Геннадий Иванович, д.т.н., профессор, профессор департамента цифровых, робототехниче-
ских систем и электроники, институт перспективной инженерии, ФГАОУ ВО «Северо-Кавказский федераль-
ный университет» (355017, Россия, Ставрополь, ул. Пушкина, д. 1). E-mail: kbytw@mail.ru. Scopus Author ID
6506372022, SPIN-код РИНЦ 1452-6823, https://orcid.org/0000-0002-2279-3887

Мочалов Валерий Петрович, д.т.н., профессор, профессор департамента цифровых, робототехниче-
ских систем и электроники, институт перспективной инженерии, ФГАОУ ВО «Северо-Кавказский федераль-
ный университет» (355017, Россия, Ставрополь, ул. Пушкина, д. 1). E-mail: mochalov.valery2015@yandex.ru.
Scopus Author ID 57202300745, SPIN-код РИНЦ 8695-1648, https://orcid.org/0000-0002-5131-5649

Translated from Russian into English by Vladislav Glyanchenko
Edited for English language and spelling by Thomas A. Beavitt

mailto:vipetrenko@ncfu.ru
https://orcid.org/0000-0003-4293-7013
mailto:ftebueva@ncfu.ru
https://orcid.org/0000-0002-7373-4692
mailto:ogur26@gmail.com
https://orcid.org/0000-0002-2387-0901
mailto:kbytw@mail.ru
https://orcid.org/0000-0002-2279-3887
mailto:mochalov.valery2015@yandex.ru
https://orcid.org/0000-0002-5131-5649

