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Abstract
Objectives. This review article sets out to evaluate the use of Generative Adversarial Networks  (GANs) to 
revolutionize cybersecurity and anomaly detection process. The research focuses in particular on the capabilities 
of  GANs to produce synthetic data and simulate adversarial attacks, as well as identifying outliers and resolving 
training, instability, and ethical issues.
Methods. A systematic review of relevant peer-reviewed articles spanning 2014 through 2024 was undertaken.
Results. The discussion concentrated on two main areas of GAN application: (1) cybersecurity through intrusion 
detection and adversarial testing; (2)  anomaly detection for medical diagnostics and surveillance purposes. The 
research studied two essential GAN variants named Wasserstein GANs and Conditional GANs for their performance 
in addressing technical challenges. The assessment of synthetic data quality used the Fréchet Inception Distance 
and Structural Similarity Index Measure as evaluation metrics.
Conclusions. GANs enhance security measures through their production of caused datasets resulting in 
a 25% improvement of detection systems accuracy. The technique allows strong adversarial assessment to reveal 
system weaknesses while helping detect irregularities in data-poor areas for medical diagnostics. High-dimensional 
tasks demonstrate 40% training instability and lead to 30% output diversity loss. The need for regulatory frameworks 
becomes essential due to ethical issues, which include the use of deepfakes that result in 25% success rates of 
biometric system evasion. Given ethical rules regulating their proper use, GANs advance cybersecurity by providing 
anomaly detection simultaneously with improved training stability and lower operating expenses. Prior versions of 
GAN-reinforcement learning and additional transparent systems require focused development as part of responsible 
innovation efforts.
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Резюме 
Цели. Основной целью обзора является оценка изменений кибербезопасности и методов обнаружения 
аномалий в результате действия генеративно-состязательных сетей (ГСС). В исследовании анализируются 
возможности ГСС при генерации синтетических данных, моделировании состязательных атак, выявлении 
выбросов, а также решении проблем нестабильности обучения и этических вопросов.
Методы. Проведено систематическое исследование на основе научных статей, охватывающих период 
с 2014 по 2024 гг.
Результаты. Обсуждение сосредоточено на двух основных областях применения ГСС: обеспечении кибер-
безопасности посредством обнаружения вторжений и проведения состязательного тестирования, а также 
обнаружении аномалий в целях медицинской диагностики и мониторинга. Исследованы два ключевых ва-
рианта ГСС – вассерштейновские ГСС и условные ГСС – с точки зрения их эффективности в решении техни-
ческих задач. При оценке качества синтетических данных использованы две метрики: расстояние Фреше и 
показатель структурного сходства.
Выводы. ГСС улучшают безопасность за счет генерации специализированных наборов данных, что при-
водит к повышению точности систем обнаружения на  25%. Метод позволяет проводить углубленную со-
стязательную оценку для выявления слабых мест систем, а также способствует обнаружению нарушений 
в областях с дефицитом данных для медицинской диагностики. Высокоразмерные задачи демонстрируют 
40%-ю нестабильность обучения и приводят к 30%-й потере разнообразия выходных данных. ГСС способ-
ствуют развитию кибербезопасности и систем обнаружения аномалий, однако остаются вызовы, связанные 
с обеспечением стабильности обучения, снижением эксплуатационных расходов и соблюдением этических 
норм, регулирующих их использование. Развитие методов обучения с применением для ГСС и разработка 
прозрачных систем требуют дальнейших усилий в рамках ответственных инновационных инициатив.

Ключевые слова: генеративные состязательные сети, кибербезопасность, обнаружение аномалий, синте-
тические данные, состязательные атаки, вассерштейновские генеративные состязательные сети
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INTRODUCTION

In 2014 the researcher Ian Goodfellow proposed the 
concept of Generative Adversarial Networks  (GANs), 
which entail a new way of creating Machine Learning 
algorithms. Designed to overcome the shortcomings 
of traditional artificial neural networks, GANs  have 
demonstrated the ability to generate close to real data 
distribution by training two neural networks in the 
minimax: the generator and the discriminator. Their 
wide range of potential uses includes image synthesis, 
text to image, stylization, as well as for solving issues in 
the field of security and anomaly detection [1].

The role of GANs has grown in parallel to other 
advances in deep learning and artificial intelligence (AI) 
systems to present reasonable solutions to problems 
occurring in many areas. Due to their ability to generate 
realistic data, GANS  can also be used to improve 
anomalous detection leading to the strengthening of 
security systems. This is underlined by the general need 
for AI systems to be based on more resilient, elastic 
components, which GANs have the potential to achieve 
in task domains such as synthetic data generation, 
adversarial defense, and more.

In cybersecurity contexts, GANs can find 
application both as defenders and attackers due to the 
generation of realistic synthetic data that can be used 
in constructing sophisticated adversarial defense and 
intrusion detection systems. Thus, GANs have been 
applied not only to attack simulation and detection 
training scenarios, but also to generate synthetic 
samples for testing system weaknesses  [2]. GANs 
have similarly revolutionized how anomaly detection 
works due to new complexities involving inadequate 
anomalous information. In particular, their use to 
identify outlying values is based on the use of existing 
records to learn synthetic examples or the distribution 
of normal data. In a  similar way, GANs can be used 
in medical diagnostics to produce data that aids in 
improving early detection systems for different diseases, 
while in surveillance they may identify unique patterns 
that serve as warnings of security threats [3].

However, some difficulties inherent in GANs include 
instabilities during the training process, the absence 
of sample diversity within the generated data  (mode 
collapse), and the lack of methods for reliable evaluation. 

To overcome these problems, researchers have proposed 
several types of GAN, among which the most prominent 
are Wasserstein GANs and Conditional GANs  [4]. 
Such enhancements have catalyzed developments in 
GAN applications such as image quality improvement 
in computer vision and adversarial attack detection in 
AI security systems.

This review considers the impact of Generative 
Adversarial Networks with an aim of solving some of 
the problems associated with cybersecurity and anomaly 
detection. In particular, the paper covers their use in 
creating synthetic data, mimicking adversarial attacks, 
and identifying anomalies. Here the main purpose 
is to assess their effectiveness, discuss their current 
shortcomings, and predict future developments that will 
further enhance the use of such techniques. Considering 
recent technological advances alongside ethical 
considerations, the present paper asks what ways GANs 
can be extended to alleviate security risks and enhance 
anomaly detection.

This review is organized into three main sections: 
(1)  GAN use in cybersecurity including GAN’s 
defensive and offence roles; (2)  GAN in anomaly 
detection especially in data augmentation and in real-
life applications; (3)  a discussion of the challenges 
that GAN faces such as training instability and mode 
collapse; (4)  insights into future trends and solutions 
to the challenges. Figure  1 shows a  classification of 
GAN models.

1. BACKGROUND

1.1. Overview of GANs

GANs as introduced by Goodfellow et al. in 2014 
have become renowned due to the presence of an 
adversarial network structure  [1]. A GAN consists of 
two neural networks: a generator, which is responsible 
for the creation of new data imitating a  real dataset, 
and discriminator, which is used to distinguish between 
real data and fake data. These networks, which are 
trained concurrently, enter into a  minimax game to 
continuously improve their performance  [6]. Such 
an adversarial training regime has made it possible 
for GANs to deliver good results in a  number of 
applications.

Для цитирования: Арафат З., Юдина О.В., Абдулазиз З.А. Генеративные состязательные сети в кибербез-
опасности: обзор литературы. Russian Technological Journal. 2025;13(5):7−24. https://doi.org/10.32362/2500-
316X-2025-13-5-7-24, https://www.elibrary.ru/ISXHGA
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1.1.1. Foundational concepts
A generator employs a  receiver operating 

characteristic as input to generate data samples, while 
a  discriminator estimates an input’s likelihood to be 
real entries. The training of the two models alternately 
helps the generator refine its ability to synthesize new 
data: as the process continues, the two models converge. 
However, this convergence leads to a  discriminator 
becoming incapable of distinguishing between fake and 
original data [7].

1.1.2. Other GAN variants
•	 G (Generator): In the original GAN framework, 

G  is a  neural network that takes some random 
noise vector z  ~  p(z) and maps it to a  synthetic 
sample  G(z) that was supposed to model the real 
data distribution p data(x).

•	 D (Discriminator): A neural network which is given 
either a real data sample x or a made-up sample G(z) 
and produces  D(·)  [0,  1), its estimate of how 
real the sample is. It is conditioned to maximize 
logD(x) + log(1 − D(G(z))).

•	 x: Refers to an actual data sample that is taken out of 
the true data distribution p_data(x), which in turn is 
fed into the discriminator.
-  �SNGAN (Spectral Normalization GAN): This 

normalizes the weight matrices of the discriminator 

using spectral normalization, which imposes 
a 1-Lipschitz constraint to significantly increase 
the stability of training at little computation cost.

-  �JR-GAN (Jacobian Regularization GAN): 
Adds a  Jacobian regularization term that 
penalizes the training dynamics of the GAN 
to stabilize its convergence simultaneously 
of both the phase  (complex eigenvalues) and 
conditioning (ill-conditioned Jacobian) problems.

-  �EBGAN (Energy-based GAN): Considers the 
discriminator as an energy model where data 
regions are assigned low energy, while other 
regions are assigned high energy; by learning to 
minimize the energy of its outputs, the generator 
is forced to match the output along the medial 
manifold.

-  �CapsGAN: Decorates the CNN-based 
discriminator with a Capsule Network (CapsNet) 
that adopts a  dynamic routing as well as an 
optimal use of geometric transformations as the 
spatial hierarchy.

-  �InfoGAN: An information-theoretic 
generalization that uses the code-generator based 
mutual information between any subset of the 
latent codes and generated outputs to permit 
the fully unsupervised learning of disentangled, 
interpretable representations.

GAN 
2014-06 Structure
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Fig. 1. Classification of GAN models [5]
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-  �WGAN-GP (Wasserstein GAN with Gradient 
Penalty): This eliminates the weight clipping in 
WGAN and substitutes it by a  gradient-norm 
penalty on the critic, which imparts Lipschitz 
continuity to facilitate robust, hyperparameter-
free training in varied architectures.

-  �SAGAN (Self-Attention GAN): Combines 
self-attention layers into the generator and 
discriminator to establish long-range dependence, 
which significantly enhances high-res image 
fidelity.

-  �BEGAN (Boundary Equilibrium GAN): The 
discriminator is an autoencoder that enforces 
boundary equilibrium between generator and 
discriminator losses, which are derived from 
the Wasserstein metric, and offers interpretable 
convergence measure and balance between image 
quality and diversity.

-  �ACGAN (Auxiliary Classifier GAN): 
Conditioned GAN variation, in which D is further 
expected to predict class labels; these losses are 
optimized as a  combination of adversarial loss 
and auxiliary classification loss to give coherent, 
class-conditioned generative outputs.

-  �Balanced WGAN-GP (BWGAN-GP): Generalizes 
WGAN-GP by introducing a  balancing term to 
solve the problem of data-imbalance in data-
augmentation applications to enhance the quality 
of minority-samples.

-  �DRAGAN: Applies a  local gradient penalty to 
extreme real data samples that is as opposed to 
random interpolations, to smooth discriminator 
gradients, alleviate mode drop-out, and deliver 
faster modest convergence.

-  �DEGAN: An unsupervised GAN-based 
anomalous detection system over time-series 
data; the generator and discriminators are trained 
to learn normal behaviors to provide a  high 
value of reconstruction error when detecting 
anomalies.

1.1.3. Variants and enhancements
Since their introduction, many methods have been 

developed to extend  GANs to various archetypes to 
handle issues like training instability, a  lack of variety 
in training data, and the problem of evaluation. Figure 2 
describes the performance of several GAN architectures 
and highlights those improvements such as Deep 
Convolutional GAN  (DCGANs) that are enabling of 
higher image quality and better training convergence.

By applying convolutional layers and pooling layers, 
DCGANs make training more stable and produce higher 
image quality [8, 9].

Wasserstein GANs (WGANs) involve the use of 
Wasserstein distance metric in order to fix the mode 

collapse problem and enhance gradient flow during the 
training process resulting in more stability [10].

Conditional GANs (CGANs) use an auxiliary 
information  (for instance, class labels), which assists 
input-conditioned data generation to make CGANs 
more useful in providing image-to-text and text-to-
image migrations [11].

CycleGANs are built to be used in an unsupervised 
mode. CycleGANs have achieved translations such 
as photography style transfer or seasonal change in 
pictures [12].

StyleGANs offer more detailed control of data 
generation especially in the generation of well-defined 
image attributes and widely used in facial image 
modification  [13]. Table  1 depicts characteristics of 
GAN variants.

Table 1. GAN variants and their characteristics

Variant Key features Applications

DCGANs Stability and improved 
image quality Image synthesis

Wasserstein 
GANs

Reduces mode 
collapse, smoother 

training

Diverse data 
generation

Conditional 
GANs

Conditional 
generation based on 

input labels

Malware detection, 
targeted data 
generation

CycleGANs
Unpaired  

image-to-image 
translation

Artistic style 
transfer, medical 

imaging

StyleGANs Fine-grained control 
in image synthesis

High-quality facial 
editing

Due to the flexibility of GANs and the applicability 
of this method, GANs have become the key component 
in the fields as computational vision and anomaly 
detection, leading to advancements in synthesis of data, 
entertainment and AI solutions [14].

Real Data 
Input

Hight-Quality 
Data Generation

Generator 
Creates Data

Discriminator 
Evaluates Data

New element

Adversarial 
Training

Model 
Convergence

Fig. 2. GAN training process
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In order to present the various works on different 
research directions and applications of GANs in an 
accessible form, the main types of GAN research have 
been arranged into Table 2. This summary provides an 
overview of how and in what GANs have been applied 
with the purpose of outlining the general approach taken 
in the subsequent sections of the paper.

1.2. Cybersecurity landscape

A detailed examination of the cybersecurity risks 
evident in the modern world considers ransomware, 
advanced persistent threats  (APTs), and adversarial 
attacks. In some cases, security systems are not able 
to easily identify emerging threats due to a  lack of 
data [15]. Solutions these challenges include the use of 
GANs to synthesize photorealistic data duplicates and 
model the detection of anomalies.

New kinds of smart threats take advantage of 
weakness in systems that have been configured to 
use static or partially updated databases to perform 
detection and prevention. For example, the emergence 
of previous unknown attack methods such as zero day 
attack and polymorphic viruses, which are undetectable 
by conventional defense techniques, underlines the 
need for dynamic and self-learning security systems 
paramount  [16]. Furthermore, anomaly detection is 
complicated by the scarcity of labeled anomalous 

data, which is critical for training machine learning 
models [17].

Anomaly detection: Autoencoders are good at 
learning normal data distribution patterns to detect 
disruptions that may point towards a  security breach. 
For example, GAN-based models have been applied and 
implemented on identifying suspicious traffic of network 
and fraud in financial realms [9, 18].

Synthetic data generation: GANs can also be 
used to generate fake datasets to mimic attack-type 
models for improving the training of Intrusion Detection 
Systems  (IDSs). Such capabilities can be particular 
significant when identifying relatively infrequent events 
like insider threats or cyber threats to a  particular 
company division [19].

Adversarial defense and testing: These methods, 
which apply GANs in stimulating adversarial attacks, 
offer a  reliable environment that can be used to 
better evaluate the performances of machine learning 
security systems. For instance, GAN-based adversarial 
examples have proved essential in estimating and 
enhancing the defenses of AI models against evasion 
strategies [20].

Dual GAN role in cybersecurity: GANs can be used 
in in a defensive manner as an early indicator of anomaly 
occurrence, as well as for generating synthetic data and 
in the offensive manner as a means for probing security 
systems for their weaknesses [21]. Improved GAN-based 

Table 2. Categorization of GAN research directions and applications

Type of GAN research Description Examples/Applications

Synthetic data generation
Using GANs to generate realistic 
synthetic datasets for training and testing 
models

• � Intrusion detection system training
• � Simulation of rare attack scenarios

Adversarial example generation
Crafting inputs to evaluate and improve 
the robustness of machine learning 
models

• � Testing security system vulnerabilities
• � Creating adversarial inputs for 

resilience testing

Anomaly detection Identifying deviations from normal data 
distributions

• � Detecting unusual patterns in network 
traffic

• � Financial fraud detection

Domain-specific applications Applying GANs to specific fields for 
targeted solutions

• � Biometric authentication
• � Image steganography

GAN variants for stability Enhancing the training stability and 
reducing mode collapse of GANs

• � Wasserstein GANs
• � Conditional GANs

Offensive cybersecurity Utilizing GANs to simulate advanced 
cyber-attacks for testing system resilience

• � Adversarial attack simulations
• � Malware generation

Defensive cybersecurity Developing robust anomaly and intrusion 
detection mechanisms

• � Real-time anomaly detection systems
• � Synthetic data for detection model 

training

Policy development support Using GANs for generating scenarios to 
guide policy creation and testing

• � Compliance testing with regulations 
like General Data Protection 
Regulation (GDPR)
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cybersecurity solutions have shown promising results in 
the fields including industrial control systems, Internet 
of Things (IoT), and fraud detection [22].

Table 3 describes the applications of GANs in 
cybersecurity.

Table 3. Applications of GANs in cybersecurity

Application Description Example References 

Synthetic data

Generating 
realistic 
datasets 
for IDS

IoTGAN 
reduced 

fingerprinting 
by 20%

[23]

Deepfake 
detection

Identifying 
synthetic 

media

90% true 
positive rate [24]

Malware 
visualization

Converting 
binaries to 

images

Grayscale 
image 

classification
[19]

Compliance 
testing

Simulating 
GDPR 

violations

25% improved 
breach 

detection
[12]

2. METHODOLOGIES IN PRECEDENT 
GENERATION

2.1. Synthetic data generation

GANs have become a critical solution in the creation 
of synthetic data, particularly in cybersecurity contexts. 
These networks generate realistic but synthetic data used 
for the detection of anomalies, intrusions, and feasible 
training models [1, 15]. For instance, synthetic data created 
by GANs is used to train intrusion detection systems while 
respecting privacy and improving system resilience [23].

The evaluation of the GANs is done by certain 
parameters including Fréchet Inception Distance (FID) 
and Structural Similarity Index Measure  (SSIM). 
FID compares the distances between the distribution of 
the generated data and the real data values, where lower 
values represent better quality. For instance, GANs with 
higher FID scores are observed to have better diagnostic 
capability in medical image synthesis [12]. Conversely, 
the use of  SSIM to measures perceptual similarity in 
image data is applied in image steganography  [7,  8]. 
Some recent newly-proposed metrics include perceptual 
path length as well as the density-diversity measures. 
Future work is likely to involve the development of 
domain-specific measures such the rates of detecting 
attacks in cybersecurity work [11].

2.2. Adversarial example generation

GANs are also used for adversarial functions 
involving the provision of planned stimuli as inputs 

to test the stability of an accrued machine learning 
model [24]. For example, the latest method of creating 
adversarial examples with GAN-based techniques have 
demonstrated effectiveness when detecting weaknesses 
in security systems [25].

Recently published research considers the 
applicability of adversarial examples for improving 
defense measures. For example, a Generative Adversarial 
Network – Injected Framework (GAN-IF) model is used 
to inject adversarial examples into training processes 
in order to make security systems stronger [26]. Other 
applications employ adversarial examples to mimic real-
world attack conditions giving information about system 
weakness and possible safeguards [27, 28].

2.3. Domain-specific approaches

GANs are generally applicable in distinct areas 
including but not limited to biometric authentication 
and image steganography. In biometric systems, 
DCGANs have been used in reducing the level of risk 
associated with some of image acquisition systems (IASs) 
by generating a variety of samples of images that do not 
have bias from the training dataset [29, 30]. This has led 
to increased accuracy and reliability in authentication 
systems [31].

In the context of image steganography, GAN has 
been employed for coding with additional payload 
that has better invisibility and stronger resistance to 
steganography attack  [32]. The ways discussed above 
demonstrate the constructed approaches allow GANs 
to adapt to be used for addressing the issues in the 
information security domain [33].

3. APPLICATIONS IN INFORMATION SECURITY

3.1. Defensive applications

Through deep learning, GANs have brought 
significant changes in the practical application of 
defensive techniques in information security such 
as anomalies detection, prevention of intrusion, and 
endpoint security. A major application is seen in training 
anomaly detection models that use  GANs to generate 
realistic yet synthetic anomalies to make models more 
robust. Zhang  et  al.  (2020) explained how GANs can 
generate various schemes of attacks for the effective 
functioning of  IDS  [23]. Dunmore et al. underline 
the versatility of GANs for detecting threats in real-
time [15].

Hou et al. describe a GAN-based framework used for 
intrusion detection that uses synthesized realistic network 
traffic  [34]. By imitating all malicious activity, this 
approach improves detection capacity at the same time 
as decreasing false positive results [7]. Sedjelmaci et al. 
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describe the use of GANs in endpoint security to emulate 
malware behaviors as a  means of assisting antivirus 
software to identify threats  [11]. Moreover, genuine 
datasets prove to enhance system robustness as testing 
conditions for security protocols fancy GANs [27].

Hou et al. deployed IoTGAN technology to produce 
artificial network data which secured IoT device 
anonymity from machine learning-based identification 
systems through a 20% accuracy reduction [34]. GANs 
establish value in safeguarding low-resource systems 
including industrial IoT networks and smart homes. 
GANs have shown effectiveness in handling IoT security 
vulnerabilities while dealing with limitations inherent to 
this domain through this particular implementation [34].

3.2. Offensive applications

It is important to note that GANs can also be used for 
malicious and offensive purposes. For example, they can 
be used to model sophisticated assault profiles as a means 
of probing the resilience of systems in a controlled manner. 
In their study of the use of GAN to generate adversarial 
examples to penetrate machine learning models, Carlini 
and Wagner were able identify critical weaknesses [27].

Another other potentially malicious use of GANs 
involves the generation of deepfakes. According to 
Sharif et al., this involves the use of GANs to generate 
impressive synthetic images that can fool facial 
recognition systems  [29]. Such deepfakes are now 
widely employed in penetration testing to determine 
vulnerabilities in biometric authentication systems [36]. 
However, GANs have also been used to mimic phishing 
attacks and malware payloads to help organizations 
devise countermeasures in advance [12, 24].

Kurakin et al. (2017; 2018) extended the study of 
GANs for physical world for adversarial examples by 

emphasizing the suitability of GANs for emulating actual 
attack scenarios. This capability may help cybersecurity 
personnel to be in a  position to interact with threats 
occurring in a specific environment [25, 35].

3.3. Precedent-based policy development

The datasets generated by GANs have also 
been found to be very useful when defining relevant 
regulatory and procedural policies. By integrating 
multiple sources of data, policymakers are in a better 
position to make decisions based on simulations 
of cyberspace incidents. Thangam  et  al. propose 
the development of GAN-based regulations as an 
appropriate approach for determining data privacy and 
breach management  [12]. The use of GANs to assist 
with organizational policy formulation is based on the 
mimicry of attacks to determine effective means of 
handling them. According to Goodfellow et al. (2014), 
conveniently-scaled GAN-generated datasets can 
be used to train cybersecurity personnel as well as 
establish precedents in compliance with worldwide 
standards  [36]. Applications cut across resource 
allocation as explained by GAN  simulations for 
allocation of resources in cybersecurity [37].

The advantages of GANs have also been put to use in 
compliance testing. For instance, Arjovsky et al. (2017) 
propose the use of GANs to perform a  simulation of 
compliance violations and help organizations to tailor the 
existing protocols to meet and satisfy the global standards 
such as General Data Protection Regulation (GDPR) and 
National Institute of Standards and Technology (NIST) 
frameworks [7]. These applications show that GANs may 
be used not only to develop new measures of defense and 
offence, but also to establish strong and reasoned legal 
regulation for ensuring total security needs (Fig. 3).
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4. COMPARATIVE ANALYSIS

4.1. Architectural effectiveness

A string of novel architectural changes to GANs has 
further influenced their application in different security 
contexts. Three types of GAN  model that emerged 
from different characteristics and vulnerabilities while 
dealing with security issues are DCGANs, СGANs, 
and WGANs.

4.1.1. DCGANs
DCGAN is one of the most commonly used 

architectures for the generation of high-quality 
synthetic data. Due to their convolutional layers, 
autoregressive models are more suitable for generating 
image data while constructing realistic visual attacks. 
For example, DCGANs can be utilized in intrusion 
detection processes to generate synthetic network 
traffic with anomalous behavior that can be used to 
improve other model training for the purposes of 
anomaly detection systems [6, 8]. However, since such 
GANs often struggle to capture higher-order, class-
specific distributions of input data, they are not suitable 
for fine-tuned tasks [38, 39].

The labels given in Fig. 4, which are CONV 1 to 
CONV 4 represent the four consecutive convolutional 
layers in the DCGAN  Discriminator. Each layer 
performs two functions: halving the spatial resolution, 
and doubling the number of features‐maps to take the 
network up to high‐level features expressed in terms 
of raw pixels. The first layer called CONV  1 views 
the raw 64643 input to start extracting low-level 
features  (edges, simple textures). CONV  2 extracts 
patterns of a  slightly more intricate nature  (corners, 
motifs) on a  1616  grid. Both CONV  3 and 
CONV  4 gradually accumulate toward higher level 
abstractions (parts of objects, layout of the scene), but 

shrink spatially to a unit space-map (small size 4). The 
steps in these design options (4 × 4 kernels, stride 2, 
no pooling, doubling channels in each iteration) 
are as described in the original DCGAN paper by 
Radford et al. [6].

4.1.2. CGANs
The Conditional GANs (СGANs) work by 

incorporating class labels into the generated image thus 
improving on the aspects of generating data in specific 
environments. This conditional approach has been 
essential in malware detection where СGANs synthesize 
attack sample for improved classifier labeling [40, 41]. 
For instance, when applied in malware traffic 
generation, СGANs  can generate better datasets than 
a traditional GAN [42]. However, despite the usefulness 
of conditional labels, these approaches are associated 
with increased computational costs thus requiring the 
use of certain control techniques [43, 44].

4.1.3. WGANs
Fundamental training issues such as the mode 

collapse and instability can be solved effectively by 
using the Wasserstein distance. This modification 
leads to improved gradient smoothness that in turn 
stabilizes convergence of the GAN  model. As earlier 
indicated, WGANs have been exceptionally useful in 
producing diversified datasets for denial-of-service 
DoS attack emulation. Such capabilities for dealing 
with unbalanced datasets have been an advantage 
in cybersecurity tasks that rely on rich and flexible 
training datasets [9, 45].

4.2. Algorithmic efficiency

Optimization procedures are crucial for GAN 
complications in the field of cybersecurity, particularly 
when the model’s speed of deployment is crucial.

Fig. 4. Architecture of DCGAN [6]
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4.2.1. Stability and convergence
One of the major problems in typical GANs is 

instability arising from the training of generator and 
discriminator in an adversarial manner. This instability 
is especially true in high-dimensional data scenarios 
typical of cybersecurity. Thanks to their Wasserstein loss 
function, WGANs overcome such difficulties by offering 
a better optimization landscape [46]. Experiments have 
shown that WGANs offer faster convergence in terms of 
the number of iterations like fraudulent email detection 
or intruding simulations as compared with DCGANs 
and СGANs [47, 48].

4.2.2. Computational costs
Running GAN learning algorithms is inherently 

challenging due to the high levels of computational 
resources involved in real time security applications. 
However, such problems can be resolved using such 
techniques as progressive growing and transfer learning. 
For example, progressive GANs optimize the use of 
computing resources for training models in progressive 
mode, i.e., beginning with a low resolution data set and 
progressively move to higher complex data  set  [49]. 
Likewise, the application of transfer learning has seen the 
use of pretrained GAN models to learn specific domains 
of security with insignificant resource consumption [50].

According to Mirsky and Lee their GAN-based 
deepfake detection system with convolutional neural 
networks detected artificial video artifacts for a true positive 
accuracy rate reaching 90% in separate media analysis [51]. 
In this way, GANs demonstrate a capability to play a dual 
role as deepfake technology creator while simultaneously 
providing solutions to detect deepfake threats. 

4.3. Application-specific performance

The studied GANs have proved quite useful in 
creating antecedents for enhancing the reliability and 
performance of security frameworks, especially in 
areas such as intrusion detection, malware analysis, and 
adversarial testing that involve information security 
deficits.

4.3.1. Intrusion detection systems
DCGANs and WGANs are specifically beneficial 

in extending datasets to intrusion detection systems. 
Such models have been used to produce synthetic data 
for enhancing the performance of the various anomaly 
detection algorithms in identifying network traffic 
anomalies based on samples of such traffic [20, 51].

4.3.2. Malware analysis
Specifically, СGANs have been used in malware 

analysis since other methods generate specific class 
sets. For instance, СGAN-produced datasets have been 

applied for training of malware classifiers and enhanced 
polymorphic as well as metamorphic malware detection 
efficiencies [52, 53].

4.3.3. Adversarial Testing
Adversarial testing is another area where GANs, 

especially WGANs, have shown promise it. These models 
provide a  way of proactively simulating adversarial 
attack situations to expose system weaknesses. Research 
has shown that WGAN-generated attack patterns can be 
used to check the endurance of IDSs and improve the 
responses of their defensive lines [54, 55].

The research conducted by Thangam et al. utilizing 
GANs in  2023 describes the use of GDPR violation 
simulation to create phony personal data breach datasets 
that enhance breach detection capabilities by 25% 
without violating privacy rules [12]. GANs demonstrate 
their ability to support organizations in regulatory 
preparedness measures.
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Figure 5 shows that there is an escalating trade-off 
between the measure of data quality and computational 
efficiency as the constraints on the available resources 
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are tightened. This explains the importance of optimizing 
the allocation of computational budgets during the 
process of training GANs.

5. CHALLENGES AND LIMITATIONS

5.1. Technical challenges

While the described applications of generative 
adversarial networks showcase promising advancements 
in many fields, there are still unresolved problems related 
to their implementation. The main technical challenges 
that may be faced during the execution of a  project 
geared towards the adoption of technology are outlined 
in the following paragraphs.

5.1.1. Training instability
During training, GANs are known to be problematic 

for two reasons. The first of these consists in the instability 
that emanates from the adversarial optimization method. 
Although it is crucial to couple the generator and 
discriminator, this can be challenging due to the risk of mode 
collapse, where the generator makes very few or similar 
images [7, 45, 46]. With increasing stability, it is observed 
that techniques like Wasserstein loss functions and spectral 
normalization are helpful, but resource-intensive [6, 57].

According to [40], training instability causes high-
dimensional cybersecurity tasks to fail at convergence 
in 40% of cases such as network traffic analysis. In 
simulations run by Alo et al. [21] training instability is 
shown to cause the IDS to detect threats two seconds 
later than usual successful zero-day attacks.

5.1.2. Mode collapse
The mapping of multiple input points to one output or 

mode collapse considerably hinders the GAN capabilities 
of capturing the myriad data distributions. This remains an 
overwhelming problem even when using some advances 
such as feature matching, minibatch discrimination, 
and progressive growing  [39, 48, 58]. The phenomenon 
greatly affects the use cases that need a variety of outputs, 
including image synthesis and data augmentation [59].

Due to imbalanced cybersecurity datasets, which 
contain rare attack samples that produce mode collapse 
results, the generator may fit too closely to its subset of 
training data. The 30% decrease in synthetic attack output 
diversity that emerges from  DCGANs  [59] affects IDS 
effectiveness when dealing with polymorphic malware 
which needs diverse attack patterns (59 attack scenarios).

5.2. Ethical concerns

The advanced development of GANs has produced 
several essential ethical questions involving their use 
to make deepfakes, carry out adversarial attacks, and 

engage in privacy violations. Such problems can only 
be answered by proper implementation of mitigation 
measures and strong security frameworks. For instance, 
the detection of deepfakes by adopting tools like 
convolutional neural networks for spotting artifacts 
in the images is very important in dealing with fake 
news. Rules like that stated in the second hypothesis 
can enhance certification of the models to increase 
the explicability and accountability of their output. 
Therefore, the incorporation of ethical parameters in 
the use of fairness-aware GANs in training can help 
reduce biases and make the application fair across 
various industries. Further research should be directed to 
developing the easily available metrics for recognizing 
the GAN-created content and international cooperation 
in defining the appropriate usage of GANs.

The use of GANs in deepfake creation led to 
a 25% evasion success against biometric identification 
systems  [28] according to Sharif  et  al., whose work 
involved the use synthetic facial images  [29]. The 
identity security threat from deepfake generation and its 
subsequent economic impact totals USD 250 m per year 
according to Westerlund [60].

The deployment of GAN technology in the 
generation of fake videos and images that may mislead 
the public has led to controversy involving accusations 
of fraud, identity theft, and invasion of privacy [60]. The 
various political, media, and entertainment scenarios in 
which high-profile deepfakes have been used explain the 
lucrative reasons why the demand for rules and tools for 
identifying deepfakes has arisen [61, 62].

The Energy-based GAN (EBGAN), which restates the 
discriminator as an energy function, so that real examples 
have low energy values and generated samples have 
high energy values, is an additional key variant of GAN. 
Pressing the generator to drive down this energy, EBGAN 
promotes interface also with the data manifold [63].

5.3. Resource constraints

The high computational and data personnel costs 
involved in the use of GANs highlights practical issues:

5.3.1. Data requirements
Good quality training entails the use of multiple and 

large datasets in training. Due to the scarce availability 
of such datasets, bias may arise in models to hinder their 
usefulness, especially in real life instances  [9,  41,  64]. 
Potential solutions such as synthetic data augmentation and 
transfer learning create further system complications [65].

5.3.2. Computational demands
The multiple iterations involved in the training of 

GANs for updating of the generator and discriminator 
sections make this technology inherently resource 
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intensive. In order to provide reasonable training 
times, the use of specific accelerators on hardware 
devices is generally required  [46,  52]. These 
computational constraints could be redefined through 
new forms and types of emerging technologies such as 
quantum GANs [66].

The computational requirements of GANs (10–20 GPU  
hours per epoch on CIFAR-10 (Canadian Institute for 
Advanced Research))  [67] make them unsuitable for 
real-time IoT anomaly detection when using devices 
with less than 1 GB RAM. A vital scalability gap has 
emerged in the demonstration by Sedjelmaci  et  al. 
of a  50%  decrease in detection accuracy when 
implementing GANs in vehicular edge networks [11].

6. FUTURE DIRECTIONS

6.1. Research opportunities

The challenges in training GANs due to their 
inherent instability are paramount in real-time operation. 
Problems like mode collapse and vanishing gradient can 
significantly hinder the usage of these networks. The 
changes in loss functions including Wasserstein loss 
and least-squares GAN or LSGAN have demonstrated 
the ability to stabilize the learning process due to better 
convergence of generator and discriminator  [18,  45]. 
Various weighted modification techniques such as 
regularization, spectral normalization, and gradient 
penalties have also improved stability in some 
cases [57, 67].

Since training GANs for real time applications 
requires a lot of computational power, efficiency is a key 
issue. Recent approaches such as pre-seeding are used to 
reconstruct the architectures of the end models and make 
them lightweight as possible without overtly lowering 
the performance of GAN. Work is also ongoing in the 
use of distributed training across the edge and the cloud 
to support scalability and real-time responsivity [68, 69].

According to high-dimensional data obtained by 
Network Security Laboratory – Knowledge Discovery in 
Databases, the hybrid LSGAN model and WGAN system 
will achieve mode collapse suppression of less than 
10% to outperform independent WGANs by 50% while 
being ten times faster according to [10]. A real-time IDS 
should be used to evaluate how the latency reduction 
from 2 s transforms into <0.5 s.

A MobileGAN system trained on a Canadian Institute 
for Cybersecurity Intrusion Detection System 2017 
Dataset (CICIDS2017) that functions well on IoT devices is 
shown to fulfill the goal of completing training in less than one 
GPU hour while achieving higher than 90% IDS accuracy. 
A pilot study carried out by Sedjelmaci et al. implements 
a vehicle network attack simulation aiming to achieve 30% 
faster detection times [11].

6.1.1. Towards developing hybrids of GANs 
 with Reinforcement Learning

The combination of GANs with reinforcement 
agents can be viewed as a  highly promising line 
of developing adaptive intelligent systems. These 
models integrate the generative properties of 
GANs with the decision-making competency of 
Reinforcement Learning  (RL). For example, GANs 
are used to model realistic adversarial scenarios to 
enrich the training of RL agents against advanced 
cyber threats [70, 71].

Future works in dynamic threat handling, 
automatic vulnerability assessment, and anticipatory 
defense techniques may be carried out by hybrid 
GAN-RL  models. Such systems can recognize shifts 
in attacking methods in real-time, making them more 
reliable for providing cybersecurity in industrial control 
systems, fraud detection applications, and smart grid 
applications [72]. Moreover, improvement in the multi-
agent GAN-RL framework may facilitate decentralized 
and cooperative solutions in distributed systems, such as 
IoT and cloud system [34, 43].

The research will use a hybrid of GAN-RL to detect 
zero-day attacks by combining GAN pattern generation 
with RL agent defense adjustments to achieve improved 
detection performance by 25%  compared to single 
GAN usage as reported in Zhang et al. (2024) [73]. The 
approach is applicable when detecting APT intrusions in 
industrial control system environments.

Table 4 presents challenges and solutions in GANs.

Table 4. Challenges and solutions in GANs

Challenge Description Proposed 
solutions

Training 
instability

Difficulty 
in synchronizing 
training phases

Wasserstein loss, 
gradient penalties

Mode collapse
Generator 

produces limited 
output diversity

Minibatch 
discrimination

Evaluation 
complexity

Lack of explicit 
metrics for quality

Fréchet Inception 
Distance (FID)

6.2. Emerging applications

6.2.1. Use of GANs in IoT security  
and blockchain integration

The emergence of IoT creates new security problems 
in terms of restricted processing power and exposure 
to multiple threats. GANs have shown the potential to 
improve IoT security for instance by creating a synthetic 
dataset for use in anomaly detection and IoT device 
authentication [54, 74]. For example, GANs can generate 
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synthetic network traffic involving the training of IDS to 
recognize numerous suspicious activities [60].

Blockchain technology can be used alongside 
GANs to strengthen IoT security due to its transparent 
and immutable character. Improved data integrity as 
the result of the combination of GANs with blockchain 
result from the detection of data integrity violation 
and increased trust obtained in a  decentralized 
IoT environment [46]. Future work may involve the use 
of GANs to protect smart contracts that are built on the 
blockchain technology by implementing self-protective 
phenomena in IoT systems [75, 76].

6.2.2. Automated incident response systems
Automated incident response systems are starting to 

utilize GANs as a valuable asset in its technique. Due 
to their capability to create plausible attack scenarios, 
GANs may be used to evaluate the cybersecurity 
systems’ strengths and weaknesses  [65]. Furthermore, 
training of IDS using adversarial approach with GANs 
enhances the weak capability of IDS to detect new forms 
of threats [53].

Potential uses are developing real-time simulation 
environments based on GANs to detect and respond 
to adversarial actions in new types of cyberspace 
attacks [42]. By considerably decreasing response time, 
such frameworks can improve the overall protection of 
sufficiently essential infrastructural systems  [66]. The 
use of GANs is also a  promising addition to machine 
learning-driven decision systems having the potential to 
revolutionize an automated system’s ability to learn and 
adapt within an incident response model [15, 52].

6.3. Ethical frameworks

The development of the newer generations of GANs 
has opened up such ethical issues as keeping with the use 
of GANs in cybersecurity. The ability to misapply GANs 
to create adversarial attacks and produce deep fakes 
requires the imposition of ethical standards [60, 61]. For 
instance, recent deep fakes generated by GANs have 
been used in transmitting fake news, stealing identities, 
and performing social engineering attacks [77].

Criteria for implementing GANs responsible within 
industries and organizations include concerns about 
transparency, accountability, and data integrity. Some 
promising approaches share valuable information 
regarding the actions taken by GANs to address concerns 
over risks  [78]. Moreover, industry and government 
must work together to establish the rules governing the 
usage of GANs according to ethical standards, as well 
as to develop the necessary framework of laws and 
international standards for governing their usage [62].

Ethical frameworks also need to consider the 
problem of dual use: while advanced and unique GANs 

can be developed and applied for purely beneficial 
purposes, such as ensuring cyber protection, negative 
consequences may ensue if such technologies are used 
for malign purposes [79]. Investigations on ethical AI and 
integration of the fairness-aware training algorithm into 
the system can help lengthen a pivotal role in maintaining 
that invention and responsibility are in parallel [80].

The conducting of an investigative process with 
multiple stakeholders to establish thresholds for GAN 
misusage (less than 5% deepfake evasion) that satisfies 
NIST and GDPR requirements while adopting fairness-
aware GANs is described in Yan  et  al.  (2019)  [44] as 
having the potential to enhance transparency by  20%. 
Researchers should use this framework to evaluate 
biometric authentication systems for quantifying bias 
reduction and GAN performance while testing on 
biometric authentication.

CONCLUSIONS

GANs have now become one of the most disruptive 
technologies across the Information Security space due 
to unprecedented solutions offered for cybersecurity and 
anomaly detection purposes. Their dual roles as tools 
for both defensive and offensive purposes highlighted in 
this review are summarized below:

•	 Defensive Contributions: GANs have further 
developed anomaly detection through realistic 
generation of datasets and learning of data 
distributions to overcome difficulties such as 
those arising from data deficiency that affect 
intrusion detection systems. Improved training 
of cybersecurity strategies is facilitated by 
their capability to replicate complicated attack 
scenarios.

•	 Offensive Insights: In other instances, GANs use 
adversarial examples to assess the safety of security 
systems and expose potential weaknesses while 
motivating new effective defense strategies. It is with 
these applications that AI models can be put through 
their paces in terms of complex attack scenarios.

•	 Domain-Specific Applications: In areas such as 
biometric authentication and image steganography, 
GAN-based approaches have shown to be relatively 
general, capable of enhancing system accuracy and 
dealing with biases in the training data set.

•	 The innovative potential of GANs in information 
security is counterbalanced by significant ethical 
concerns:
– � Misuse Potential: The adversarial examples and 

deep fake images created by GANs are represent 
dangers in the form of misinformation, identity 
theft, and penetration of security layers.

– � Opaque Decision-Making: The main drawback 
of the GANs is their opaqueness, which can 
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be disruptive especially in critical areas of 
deployment such as self-driving cars and 
biometric identification.

– � Resource Constraints: Consequently, GAN 
training requires large computational and data 
power that makes them less accessible and less 
scalable, particularly in today’s constrained 
environments.

– � Explicable GANs: Creating models to improve 
the level of transparence and interpretation of 
GAN based results.

– � Ethical Guidelines: Setting up international 
benchmarks to ensure that GAN use is compliant 
with privacy and security laws.

•	 Efficiency Improvements: Developing new methods 
for constructing GANs of low complexity and 
simplified forms that allow their deployment.

Call to action for interdisciplinary research

To realize the full potential of GANs in information 
security while mitigating associated risks, this review 
underscores the need for collaborative, interdisciplinary 
efforts:

•	 Bridging AI and Security: Strengthen the synergy 
of AI-related research with the cybersecurity field 
to architect highly flexible and real time threat 
prevention systems.

•	 Policy and Ethical Development: Coordinate 
with technical and policy stakeholders to develop 

appropriate innovative control systems to encourage 
or require proper regulatory measures of GAN to 
address such duality.

•	 Exploring Emerging Applications: In order to 
address new and developing cybersecurity threats, it 
is necessary to investigate the potential use of GANs 
within IoT protection, blockchain, and automated 
incident response systems.

•	 Further academic work should focus on stabilizing 
the training of GANs, enhancing computational cost 
effectiveness, and improving model interpretation. 
Such future developments will ensure that GANs are 
associated with a revolutionary leap in the formation of 
safe and ethically unambiguous cybersecurity systems.
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