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Abstract

Objectives. The authors conduct an analytical review of available optimization methods and simulation tools
to identify their key features, effectiveness, and possible applications. The aim was to form an integrated picture
of modern approaches, which may facilitate decision making when selecting the most appropriate method for
a particular task. The key objective was to review and classify various optimization tools, which of theoretical and
practical value for developers of new models.

Methods. Scientific publications and analytical materials were retrieved from specialized databases and technical
documentation libraries.

Results. The analysis and classification of existing optimization methods allowed the authors to identify their
advantages, disadvantages, and application features, as well as to determine the relationship between theoretical
concepts and their practical implementation. During the analysis, various optimization approaches were considered,
covering both classical and modern simulation methods.

Conclusions. The importance of informed selection of optimization methods, which raise the efficiency and accuracy
of simulation procedures, is highlighted. The results obtained indicate the need for further study and comparative
analysis of the methods used in practice in order to establish their efficiency and applicability in various scenarios.
Future research directions include experimental testing of the effectiveness of various approaches based on several
models in order to determine their advantages and disadvantages for a more informed selection of the method
suitable for a particular task.

Keywords: optimization methods, application features, multi-criteria optimization methods, optimization algorithms,
evolutionary algorithms, optimization of digital models, optimization problem, optimization software tools
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Pe3iome

LUenu. Llenb ctatby — NpoBECTU aHaNUTUYECKNA 00630p METOJ0B U UHCTPYMEHTOB ONTUMMU3ALINK, NCMOJb3YEMbIX
B MOOENNPOBaHUM, ANS BbISBIEHUS UX KITIOHYEBbIX 0COOEHHOCTEN, 3P DEKTMBHOCTY U 0O1acTel BO3MOXHOIo npume-
HeHus. ViccnegoBaHme HanpaBneHo Ha GOPMUPOBaHME LENOCTHOW KapTUHbI COBPEMEHHbLIX MOAX0A0B, YTO MO3BOANT
creumanncTam BblbupaTb Hanbonee yaoodHble MeToAbl ANs peLleHns pa3HoodpasHbIx 3aaa4y. KnoyeBas 3agada — co-
CTaBUTb CUCTEMATU3NPOBAHHOE NpeacTaB/ieHne 00 MHCTPYMEHTaxX ONTMMU3aLUMM, OXBaTbIBalOLLEE Pa3/INyHble Me-
TOOVKN N NOAX0Obl, KOTOPblE 0OecneyaT Kak TEOPETUYECKYIO, TakK U MPaKTUYECKYIO LIEHHOCTb 415 pa3paboTkm bonee
3 PEKTUBHbIX MOAENEN.

MeToabl. [Ina 0OCTMXEHUS NOCTaB/IEHHbIX LieNei nccneqoBaHe OCHOBLIBAIOCh HA OOLLIMPHOM BbIOOPKE Hay4YHbIX
nyénukauuin u aHannMTUYecKuUx MmaTepmanos, 0TOOPaHHbLIX U3 CreLnanmM3npoBaHHbIX 6a3 AaHHbIX U TEXHUYECKOW A0-
KyMeHTauumn.

PesynbTaTbl. [IpoBeaeHbl aHanM3 1 Knaccudukaums CyLLEeCTBYIOWNX METOA0B ONTUMM3ALLNA, YTO NO3BOAWSIO Bbl-
SIBUTb UX CUJIbHbIE U cnabble CTOPOHbI, 0COOEHHOCTU NPUMEHEHUS, a TaKXXe ONpPeaemTb B3aMOCBA3b MEX/y Te0-
PETUYHECKNMM KOHLIEMLMSMM U NX NPaAKTUYECKOW peannsaumen. B xoge aHanmaa paccMOTPEHbl pasnnyHble Noaxoabl
K ONTUMN3aLUMM, OXBaTbIBAIOLLME KaK KIlaCCUYECKNEe, Tak U1 COBPEMEHHbIE METObl, HTO 06ecne4ymsnio BCECTOPOHHUN
00630p NPMMEHUMBbIX NOAX000B B MOAENNPOBAHUN.

BbiBoAbl. [MpoBeaeHHOE nccnesoBaHne NoATBEPXAAET BAXXHOCTb MPaMOTHOro nogdopa MeToAoB OnNTUMU3aLmN,
41O cnocobcTByeT 6onee 3pPEKTUBHOMY M TOHHOMY MOAENMPOBaHUIO. [MoNyYeHHble pe3ynbTaThl NOA4YEPKMBAOT
HEoOX0AUMOCTb AaflbHENLLEr0 N3YHEeHUS U CPaBHUTEIbHOIO aHannM3a MeTo0B Ha NPaKTUKe C Lienbio 6onee rnybo-
KO0 NOHMMaHNSA UX 3PPEKTUBHOCTM U MPUMEHUMOCTU B PA3/INYHbIX YCIOBUSX. [epcnekTnebl OyayLimx nccneno-
BaHWI BKMOYAOT 3KCNEPUMEHTaNlbHOEe TeCcTUpoBaHne apPekTUBHOCTIN PasnnyHbIX NOAX0A0B Ha 6a3e HECKObKNX
MOZEeNen, 4To NO3BOSINT ONPEAeNUTb X NPEMMYLLIECTBA U HeaoCcTaTku ans 6osiee TO4HHOro Bbibopa MeToaa B 3aBU-
CUMOCTN OT cneuudmnkn 3aaay.
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KnioueBble cnoBa: MeToabl ONTUMU3ALNN, 0COBEHHOCTU npMMeHeHnd, MHOrokputepualibHble MeTOAbl ONTUMMN3a-
L1, oNTUMN3aLMOHHbIE allfOPUTMbI, 3BOJTIOLMOHHbIE aNirfOPUTMbl, ONTUMMN3aLUNA LI,VICI)DOBbIX mMoAenen, onTMMmn3aLumoH-

Had 3aga4a, NporpaMmmMHblie MHCTPYMEHTbI ONTUMN3aLnn

Onsa untupoBaHua: beketos C.M., 3yokora [.A., N'vHusak A.M., Bypnyukas X.B., Pegbko C.I'. CoBpeMeHHbIE METO-
Obl ONTUMKU3aUMN 1M 0COBEHHOCTU uX NpuMeHenusi. Russian Technological Journal. 2025;13(4):78-94. https://doi.
org/10.32362/2500-316X-2025-13-4-78-94, https://www.elibrary.ru/CVZOXD

Mpo3spavyHocTb hUHAHCOBOW AeATENIbHOCTU: ABTOPbI HE UMEIOT GMHAHCOBOW 3aMHTEPECOBAHHOCTM B NMPEACTaB/IEH-

HbIX MaTepunanax nin MmetTogax.

ABTOpbI 329BASIOT 06 OTCYTCTBUMN KOHDNNKTA MHTEPECOB.

INTRODUCTION

Optimization plays an important role in simulation
modeling, allowing optimal results to be obtained,
resources to be saved, and the quality of developed
products to be improved. Optimization is becoming
an essential element of modern engineering processes
aimed at solving complex problems and achieving high
technological standards [1]. However, to ensure the
efficiency and accuracy of optimization, unnecessary
repetition should be avoided while taking into account
the diversity of methods and their complexity in
software implementation. This is particularly important
in such areas as design activity [2], energy [3], and
healthcare [4], where even minor improvements may
yield significant consequences.

A bibliometric analysis of optimization techniques
conducted in [5, 6] described the evolution of the concept
of “optimization” from trial and error to more formalized
approaches. Due to the rapid progress in this direction,
continued efforts are required to trace new methods for
an approximate solution to optimization problems and
review their computational aspects, applicability areas,
and practical merits. The choice of an optimization
method must be tailored to the specific features of the
models. This requires consideration of the requirements
for suitable methods and tools based on the nature of the
models and the characteristics of the systems in order
to create more flexible and adaptive conditions for the
developer [7, 8].

The relevance of the analysis of optimization
methods is explained by a number of factors, including
the increasing complexity of sociotechnical and
socioeconomic systems, the growth of computing power,
and the emergence of more efficient methods [9, 10].

In this article, we carry out an analytical review
of optimization methods with the purpose of their
classification and assessment of their applicability in
simulation modeling. Consideration of a large variety
of optimization methods and their further analysis
simplifies the research process and makes optimization
approaches more accessible to a wider range of
specialists.

RESEARCH METHODS

The aim of this literature review was to identify key
optimization methods that are used in various research
areas. The growing interest in model optimization
problems has generated a significant amount of research
over the past few years, which highlights the relevance
and importance of developing efficient optimization
methods.

Aliterature review was conducted using the databases
of Scopus!, Russian Science Citation Index?, and the
List of the Higher Attestation Commission for Academic
Degrees and Titles® (VAK) under the Ministry of Science
and Higher Education of the Russian Federation. The
literature search was conducted using the following
keywords: optimization type, multicriteria optimization
methods, computational complexity of optimization
methods, parallel computing, optimization methods,
decision making, optimization algorithms, evolutionary
algorithms, statistical methods, mathematical methods,
simulation modeling, model optimization, optimization
problem, optimization problems. The total number of
articles on these queries for the period of five years
comprised 434.

The analysis of the retrieved articles was performed
to identify the most common optimization methods used
in different research areas. Figure 1 presents the results
of the conducted analysis, i.e., the ratio of published
articles on the topic to the total volume over the past
five years.

Model optimization methods determine the
conditions of existence of an object or process under
which the highest value of some property of this object or
process is achieved. They are used to search for optimal
solutions to various problems where it is necessary to
optimize certain parameters or criteria [11].

! https://www.scopus.com/. Accessed October 29, 2024.

2 Russian Science Citation Index is a database that
distinguishes the best Russian journals and places them on the
Web of Science platform.

3 Higher Attestation Commission under the Ministry of
Science and Higher Education of the Russian Federation. https://
vak.minobrnauki.gov.ru/ (in Russ.). Accessed October 29, 2024.
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Embedded optimization methods in N\
discrete event and hybrid models
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Optimization in game-theoretic models —
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Mixed-integer optimization programming —
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Interpolation optimization —— 2.76 ;
of the probability distributions |
Event tree-based optimization simulation F "

481
Dual annealing method —/\ "{50

Artificial bee colony method —/

Ant colony optimization method S
Particle swarm optimization method

Stochastic optimization modeling
by the Monte Carlo method

Optimization by the maximum likelihood
method

8.0 Va Optimization in Bayesian models

Differential evolution method

Genetic optimization algorithm

Global optimization method
with annealing

Fig. 1. Share of articles in different research areas over five years

The results offer an integrated picture of optimization
methods and their classification, enabling researchers to
select a specific model optimization method depending
on the objectives, type of optimization, ability to account
for complex target functions, and the advantages and
disadvantages of the methods.

CLASSIFICATION OF OPTIMIZATION METHODS

Optimization methods can be divided into two
categories: those based on the estimation of parameters of
the a posteriori distribution, and those based on imprecise
and approximation estimation. The a posteriori estimate
is an estimate obtained empirically by performing an
experiment, while the approximation estimate is an

Classification
by categories
I

A 2 L 4

estimate approximated to real values. Within the latter,
two more subgroups can be distinguished: those based on
evolutionary algorithms and those based on simulation
modeling. The classification of optimization methods
developed by the authors is shown in Fig. 2.

Stochastic optimization modeling
by Monte Carlo method

The Monte Carlo method is widely used in
stochastic modeling, especially in situations where
probabilistic parameters need to be taken into account.
The popularity of this method is explained by the
possibility of predicting different outcomes based on
probabilistic factors.

= Methods = Methods based
based on estimation on imprecision

of parameters and approximation
of the a posteriori distribution estimation

1) Maximum likelihood
estimation method

2) Bayesian method to
account for a priori
information in the
framework of parametric
statistics

1) Stochastic optimization
modeling by Monte Carlo
method

2) Probabilistic event
tree-based optimization
simulation

3) Interpolation
optimization
of the probability
distributions

4) Mixed-integer
optimization
programming

v v
= Methods based =]

X . imulation-
on the evolutionary algorithms Simulation-based

methods

1) Differential evolution

method 1) Optimization
2) Genetic optimization in game-theoretic
algorithm models of strategic

system interactions
2) Discrete event and
hybrid simulation with
embedded process
optimization

3) Global optimization
method with annealing

4) Particle swarm
optimization method

5) Ant colony optimization
method

6) Artificial bee colony
method

7) Dual annealing method

Fig. 2. Classification of optimization methods
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The process of stochastic Monte Carlo modeling
includes the following steps: generation of random input
data, execution of simulation, generalization of results,
and evaluation of phenomena, which can be generally
described by the formula:

1Y
mc=ﬁi§f(l), (1)

where mc is the estimation of the phenomenon by the
Monte Carlo method, N is the number of the performed
simulations, f{7) is the result of the ith model run.

Unlike deterministic approaches that involve
strict adherence to fixed algorithms, the Monte Carlo
method is based on a multiple repetition of
experiments (simulations) using random input data.
Each run of the model yields one possible result, and the
multitude of such results makes it possible to estimate
the statistical distribution of outcomes and, thus, to
predict probabilistic phenomena more accurately.

The process of stochastic Monte Carlo modeling
includes such stages as generation of random input
data, modeling, accumulation of results (the results
of each individual modeling are saved), evaluation of
phenomena, where statistical processing is performed
on the basis of accumulated data and mean values,
dispersions, probabilities of occurrence of events, and
other characteristics are calculated.

The application of the Monte Carlo method is
not limited to one specific area, finding application in
various forecasting tasks. For example, the Monte Carlo
method was used in combination with an error function
in the form of a Gaussian function to predict the spread
of the COVID-19 virus in Italy [12]. The authors
conducted 150 Monte Carlo simulations to obtain an
accurate prediction of the number of deaths in China
and Italy.

The Monte Carlo method was also applied to
compare the performance of multicriteria prioritization
methods for selecting the sites for solar power plants
in Iran [13]. The study used two reliability measures to
evaluate different prioritization methods, and the Monte
Carlo simulation evaluated the reliability values in each
of these methods by conducting sensitivity analysis.

Optimization by the maximum likelihood
estimation method

The method of maximum likelihood estimation (MLE)
is a statistical approach widely used either alone or
in combination with other methods to process data in
research or problem solving. The method provides
an estimation of unknown parameters by maximizing
the likelihood function, being used for a variety of
purposes [14].

The MLE method searches for the value of 0 at
which the likelihood function is maximized:

Oy g = arg maxyL(0X), 2)

where X is the data sample, 0 is the parametric model;
L(01X) is the likelihood function that, for a given model,
measures the probability of obtaining the observed data X
given the value of the 0 parameter.

This algorithm for implementing the method can be
interpreted as follows: provided that the observed data
can be described by a certain statistical model, MLE
selects such model parameters that make the observed
data the most probable ones.

The basic steps of the maximum likelihood method
include defining the parametric model, formulating
the likelihood function, and maximizing the likelihood
function.

The maximum likelihood method is widely used in
statistics to estimate parameters in various models, such
as linear and generalized linear models, factor analysis,
structural equation modeling, hypothesis testing, confidence
interval formation, and discrete choice models. It is based
on maximizing the likelihood function, which reflects
the probability of selecting a particular parameter given
known events. The MLE method is aimed at finding the
parameters at which the results obtained by the model are
most consistent with the actual data. The estimation of
the parameter correctness is performed using the Akaike
information criterion, which balances the model complexity
and increases the validity at the optimal ratio with the
maximum likelihood. The model with the minimum Akaike
information criterion and the maximum likelihood value is
considered the best. The following formula for the Akaike
information criterion (AIC) is used:

AIC = —2InL + 2K, A3)

where L is the value of the likelihood function of the
model (conditional probability of obtaining observed
data with given model parameters), K is the number of
model parameters.

The AIC can be understood as a measure of the
trade-off between model accuracy and its simplicity. In
cases where the model is extremely complicated (e.g.,
contains a large number of parameters), it may produce
a good fit of the data, but fail to generalize the data. The
AIC criterion avoids this problem by adding a penalty
for increasing the number of parameters.

Optimization in Bayesian models

Bayesian models are based on Bayes’ theorem,
which offers a way of updating probability estimates of
model parameters based on new data. These models take
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into account a priori information about the parameters
and adjust this information to the observed data. Bayes’
theorem is defined by the formula:

P(0| D)= %, “4)

where 0 is the vector of model parameters; D is the
data set on which the model is trained; P(0|D) is the
a posteriori probability of the model parameters given
the data; P(D|0) is the probability of the data given the
model parameters; P(0) is the a priori probability of the
model parameters; P(D) is the marginal probability of
the data.

The application of Bayesian models begins with the
specification of an a priori distribution that reflects the
initial assumptions about the model parameters. This
distribution can be informative provided the presence
of evidence from previous studies, or uninformative
provided the minimum initial assumptions. The
likelihood ratio is then calculated, which shows the
likelihood of the observed data to be observed under
different parameter values. In the next step of applying
Bayes’ theorem, the a priori distribution is combined
with the likelihood to obtain an a posteriori distribution,
which reflects the updated knowledge of the model
parameters after accounting for the data. The resulting
a posteriori distribution is interpreted to estimate
parameters, determine confidence intervals, and make
other statistical inferences. Thus, Bayesian models are
amethod that enables combining a priori knowledge and
new data for a more accurate parameter estimation [15].

Such models are used in statistical analysis, machine
learning, and other areas where uncertainty must be
accounted for and probability estimates updated as new
data become available.

For example, [16] proposed a mathematical model
for detecting anomalous observations using neural
network sensitivity analysis. The use of the Bayesian
approach enabled the researchers to take into account
the uncertainty parameter and accumulate knowledge
about the data behavior. This makes the method effective
for anomaly detection in complex multidimensional data
spaces, such as medical monitoring or disease prediction
systems.

In the economic domain, Bayesian models are
helpful in assessing the impact of tax schemes on
different social groups [17]. The use of theoretical
foundations of planned economy in combination with
Bayesian methods enables analysis of the probabilistic
effects of changes in tax policy and developing optimal
taxation schemes that take into account the uncertainty
of initial data and forecasts. Bayesian methods are used
in the development and analysis of machine learning
algorithms, especially in optimization problems.

For example, the authors [18] proposed a machine
learning model for organizing employee performance
in remote and hybrid modes. The Bayesian approach is
effective in estimating the uncertainty of the data related
to employee performance, taking into account the
probability distribution of various factors such as work
schedule, team interaction, and workflow features. This
makes the model more adaptive and flexible.

Interpolation optimization
of the probability distributions

Interpolation optimization of the probability
distributions is a method that combines interpolation of
data with the construction of probability distributions
to fill in intermediate values between known discrete
points. Splines, i.e., smooth piecewise polynomial
functions that can approximate complex relationships
with a high degree of accuracy, are used for this purpose.

In this approach, the key problem is to construct
a function that not only passes through given points of
probability distributions, but also preserves their important
characteristics, such as the mathematical expectation. To
construct splines, we define the following function [19]:

c; d;

S =a, +bi(x—xl.)+?’(x—xi)2 +E’(x—xi)3, (5)
where a;, b;, ¢;, d; are the coefficients to be determined
at each of the segments; i =1Ln, x; ;| <x<x,.

The method is applied in cases where it is
necessary to predict the probability distribution values
at intermediate points on the basis of discrete data. For
example, in models, splines can be used for interpolation
of the probability distributions in time or by the values
of the parameters.

Special attention is paid to preserving the mean
characteristics of the distribution. To that end, splines
are used, which provide coincidence of the mathematical
expectation of the approximated function with the
mathematical expectation of the original distribution.
This approach makes it possible to preserve statistical
properties of the data, which is especially important
in tasks where correct representation of probabilistic
characteristics is required.

One example demonstrating the application of this
approach is the study of failures of complex systems
under combined loads. The work [20] described an
interpolation method that enables the probability of
system failure to be estimated from a limited amount of
test data under different types of loads. The use of splines
to interpolate failure probabilities makes it possible to
recover distributions for intermediate values of load
parameters while preserving the original statistical
characteristics.
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Another example is related to solar radiation
modeling, where splines with preservation of the
mean value are used for interpolation of solar activity
data [21]. The author proposed an interpolation
method that can correctly reconstruct the distribution
of solar radiation at intermediate points of the time
series, ensuring the coincidence of the mathematical
expectation of the spline function with the initial
average value.

Mixed-integer optimization programming

Mixed-integer programming is
optimization task [22]:

the following

max{cTx:b! <Ax<b2,d! < dez,xl. €S}, (6)

where bl, b2, ¢, d!, d2 e R™; Aisareal mxn -matrix;
X is a n-vector of variables (unknowns); S < {L, ..., n} is
a set of integer variables, and X; is a subset of S bounded
by integers.

Several approaches are used in practice for solving
mixed-integer programming problems.

The branch-and-bound method [23] is based on
splitting the original problem into subproblems, each
of which is solved separately. The main idea is to build
a decision tree, where the search space is partitioned
at each level, and binding is used to exclude irrelevant
variants based on the solutions of previous nodes of the
tree. This method is used in logistics problems where
it is necessary to consider both integer and continuous
variables, e.g., when optimizing delivery routes.

The method of cutting planes [24] is aimed at
improving the approximate solution by adding new
constraints that exclude non-integer solutions from
the domain of admissible solutions. Such constraints,
referred to as “cuts”, gradually refine the search domain
and improve the quality of the solution. The cut method
is frequently used in inventory management and resource
allocation problems.

Decomposition methods [25], such as Benders’
generalized decomposition, involve breaking down
a complex problem into simpler subtasks. Each of the
subtasks is solved separately followed by combining the
results to obtain a solution to the original problem. This
approach is effective for large-scale problems, e.g., in
network planning or power system modeling problems.

The study presented in [26] carried out a detailed
analysis of these methods and their application in linear
and nonlinear optimization problems. The specific
features of each approach and their effectiveness
depending on the specifics of a particular problem
were the research focus. The examples include both
scheduling and model optimization problems where
mixed constraints need to be considered.

Event tree-based optimization simulation

A decision tree is a method for modeling,
classification, and regression [27]. It is a hierarchical
structure in which each node represents a test of some
attribute, each branch represents the result of the test,
and the leaves contain the values of the target variable
or the decision. Decision trees enable the construction
of models capable of making decisions based on the
analysis of multiple input attributes, which makes them
useful in the tasks of data analysis and forecasting.

Problems that require consideration of the time factor
and probabilities of the sequence of events are solved
using continuous event trees [28]. Such structures further
develop the idea of decision trees and enable modeling
of the temporal dependencies and probabilistic nature of
events. In such trees, events are described by statistical
probabilities or exponentially distributed event rates.

Events in the event tree are associated with statistical
probabilities or Poisson-exponentially distributed
constant rates. For example, component failures typically
occur at some constant failure rate A (constant hazard
function). In the simplest case, the failure probability
depends on the rate A and the exposure time #:

P=1—-¢™, (7)

where P = At, if At < 0.001.

This formula describes the exponential distribution
of events characteristic of processes that occur randomly
over time, such as failures of equipment or other systems.

Continuous event trees are useful for risk assessment
in projects where time-dependent chains of events are
possible. For example, in project management, an event
tree can model the risks associated with equipment
failures or delays in the process, taking into account
the probability of problems at each stage [29]. This
approach provides an opportunity to predict the probable
scenarios of event development and develop strategies
for risk minimization.

Optimization in game-theoretic models

Game-theoretic modeling is a method of analyzing
strategic interactions between participants in order to
optimize their strategies [30]. This method is widely used
to study situations of conflict or cooperation, where each
participant seeks to maximize their gains or minimize
losses depending on the decisions of other participants.

A key concept in game theory is the Nash
equilibrium. A Nash equilibrium occurs when no
participant has motivation to change their strategy given
the selected strategies of other participants. This means
that given each player’s strategy, no one has the desire
to change their actions, since any deviation from the
current strategy will not improve their winnings.
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Mathematical formulation: (S, H) is anoncooperative
game of n persons in normal form, where S is the set of
pure strategies, and H is the set of wins. When each
player i €{l, ..., n} chooses a strategy x{i} belonging to
S in the strategy profile (x{1}, ..., (x{n}), player i
receives his win H{i}(x). A strategy profile x" {i} € S is
a Nash equilibrium if changing one’s strategy from x" {7}
to x{i} is not profitable for any player i, i.e., for any
player i: H; (x")> H, (xl.,x:.).

The work [31] was dedicated to solving optimization
problems under uncertainty using game theory, in
particular, a move-by-nature model. This model is
applied when a participant (player) interacts with
an external environment whose behavior cannot be
controlled and which is represented as “nature” or an
external uncertainty factor. Three classical criteria were
used to select the most optimal strategy, including Wald,
Bayes, and Hurwitz criteria.

Embedded optimization methods
in discrete-event and hybrid models

Discrete-event and hybrid modeling with embedded
process optimization represent methods for optimizing
system processes in the context of scientific research.
Discrete-event modeling enables the representation of
a system as a set of entities and resources, emphasizing
the changes associated with discrete events. Conversely,
hybrid modeling combines discrete and continuous
aspects, thus providing a more accurate reflection of the
dynamics of systems [32].

Process optimization embedded in the models is an
integrated mechanism aimed at automatic parameter
adjustment, efficient resource management, and
dynamic process adaptation during the simulation
process.

This optimization approach is effective for simple
variations in the parameters being varied (e.g., different
discrete values of resource capacity); however, it
becomes significantly more complex with the advent
of differently structured process implementations. In
addition, some of the existing simulation environments
equipped with a built-in process optimization subsystem
assume manual configuration of replications. This
causes difficulties due to the large number of replications
required for the task and the probability of human error;
thus, the user may accidentally omit the optimal variant
from the list of runs.

Hybrid modeling is being increasingly used to
describe complex socioeconomic and sociotechnical
systems. This approach includes combinations of basic
paradigms of simulation modeling. Hybrid modeling
allows the system to be considered from different
perspectives, thereby providing a more complete and
accurate picture of its behavior [33].

Differential evolution method

The differential evolution method is one of the
evolutionary modeling methods designed to solve
multidimensional optimization problems. According to
the classification of optimization methods, it belongs to
the class of stochastic methods due to the use of a random
number generator in the process of finding a solution.
It also uses some ideas of genetic algorithms; however,
unlike such algorithms, it does not require working with
variables in binary code.

The algorithm behind this method starts with
initialization of the initial population of points
(candidates), which is randomly generated in the search
space. This population represents potential solutions
for the optimization task [34]. The next step involves
selecting three random points (vectors) from the current
population. These three points will be used to create
anew vector that represents a descendant in the mutation
process.

Difference vector refinement is the creation of a new
vector (descendant) by the difference of two random
vectors multiplied by a scaling factor. This step simulates
mutation, introducing diversity into the population and
providing new candidates for optimization.

The next stage is crossing (crossover), where the
elements of the new vector are compared with the
elements of the base vector. If an element of the new
vector is better (smaller) than the corresponding element
of the base vector, it replaces the corresponding element
of the base vector. This mechanism ensures preservation
of the best characteristics of vectors in the population.
Adaptability is assessed by using a target (cost) function.
The new vector is evaluated, and if being better (has
a lower cost) than the old vector, the new vector is
accepted into the population.

The steps are repeated until a stopping criterion is
reached, such as the maximum number of iterations or
reaching the desired level of fitness. Thus, the differential
evolution method effectively and iteratively improves
the candidate population in search of an optimal solution
to the optimization task.

Genetic optimization algorithm

Genetic algorithms are an evolutionary optimization
method based on the mechanisms of natural selection
and genetic evolution [35]. This method is aimed at
finding an optimal solution to a problem by simulating
the evolutionary process. The algorithm starts with
initialization, which creates an initial population
consisting of a set of possible solutions to the problem
represented as chromosomes, where each chromosome
encodes a particular solution in the search space. At each
step of the algorithm, the fitness of each individual is
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evaluated using a target function whose value reflects
the quality of the corresponding solution. Individuals
with the highest adaptability gain an advantage in the
selection process for further stages of evolution.

The evolutionary process is based on the operations
of selection, interbreeding, and mutation. Selection is
carried out to select the best adapted individuals that
form the basis of a new population. Inbreeding combines
the genetic data of two parents, producing offspring with
combined characteristics, which facilitates the study of
new combinations of traits. Mutation introduces random
changes to the genotype of individual chromosomes,
enabling the exploration of new regions of the solution
space and preventing the algorithm from converging
prematurely into local extrema. Once these operations
are applied, a new population is formed to replace the
previous one. The process is repeated until a given
number of iterations is reached or a solution with an
acceptable level of quality is obtained.

The efficiency of genetic algorithms is largely
determined by tuning the key parameters such as
population size, mutation and crossing probability, and
the number of iterations. These parameters regulate
the balance between exploring the solution space and
refining the current optimal values, which makes this
approach particularly versatile.

For example, the researchers [36] considered the
application of a genetic algorithm based on the theory
of natural selection to solve optimization problems. The
authors demonstrated the effectiveness of the proposed
approach using the example of optimizing the load
distribution function in resource-constrained systems.
A genetic algorithm was used to find the optimal
distribution of tasks among the available computational
nodes in such a way as to minimize the total execution
time and simultaneously balance the load between the
nodes.

Global optimization method with annealing

The global optimization method with simulated
annealing is a heuristic algorithm that found its inspiration
in the physical process of metal annealing [37]. The
method has become part of the toolbox for solving
complex global optimization problems, particularly in
situations where the search space may be complicated,
containing many local minima or having uncertain
characteristics.

The basic concept of the method simulates the
process of material cooling after heating. The initial
“temperature” of the algorithm determines the degree
of aggressiveness of its steps in the solution space. At
the initial stages of the process, the algorithm is more
tolerant to random changes, which enables it to avoid
getting stuck in local minima. Over time, the temperature

gradually decreases, which reduces the probability of
making the worst decisions, making the algorithm more
focused on finding global optima.

The mechanism of operation of the global
optimization method with annealing enables the
algorithm to easily overcome local minima, due to
random natural wandering through the solution space.
This provides a wider coverage of the search for optimal
solutions in complex and multidimensional spaces.

Particle swarm optimization method

The method of particle swarm optimization (PSO)
is one of the heuristic algorithms inspired by the
collective behavior of natural systems, such as flocks
of birds or schools of fish [38]. The algorithm is used
to solve optimization problems, particularly when the
search space is characterized by high dimensionality,
nonlinearity, and the presence of multiple local optima.

PSO is based on the idea of simulating the motion of
particles, each of which represents a potential solution
to the problem. Each particle is characterized by its
position and velocity, which are updated at each step of
the algorithm. The update is based on two key factors:
the personal experience of a particle (the best position it
has previously discovered) and the collective experience
ofthe group (the best solution found among all particles).
This enables particles to simultaneously explore the
search space and focus on the most promising areas [39].

The PSO algorithm has several parameters, such
as inertia coefficient, cognitive and social influence
parameters, which determine the dynamics of particle
movement and their ability to explore and search. Proper
tuning of these parameters helps to balance between
global exploration of the solution space and its local
exploration.

Applications of the PSO method cover a wide range
of optimization problems including machine learning
and neural network design, finding application in various
engineering and scientific fields.

Ant colony optimization method

Ant colony optimization (ACO) is a heuristic
method developed based on observations of the
collective behavior of ants in nature [40]. It is based
on the concept of using pheromones and stigmergy to
solve optimization problems. The principle of ACO
is based on modeling the behavior of ants that leave
a chemical trace—pheromones—when searching for
food. These traces serve as a guide for other ants,
increasing the probability for them to follow the same
route.

One specific feature of this algorithm consists in
dynamic updating of pheromone traces. In this case,
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shorter and more efficient routes are reinforced by more
pheromones left by ants. This mechanism enables the
algorithm to gradually concentrate on the most optimal
solutions, eliminating less promising routes [41].
The ACO method is effective in problems where it is
necessary to explore a large space of possible solutions
and select the best of them.

The application of ACO covers a wide range of
optimization problems. These include, e.g., solving
routing problems and finding optimal paths in networks,
such as transportation systems or computer networks.
Parallelization of the algorithm, which consists in
dividing the work into several independent agents,
makes it possible to significantly reduce computation
time and make the algorithm applicable to problems
with a large number of variables.

Artificial bee colony method

The artificial bee colony (ABC) method is an
optimization algorithm that simulates the strategies
of bees searching for food sources in nature [42]. The
algorithm distinguishes three types of bees: workers,
observers, and scouts.

At the initial stage, there is preliminary information
about the location of food sources representing
admissible solutions to the optimization task. The
worker bees head to these sources, search in their
vicinity, and memorize new solutions that improve the
parameters of the task.

After the search phase is completed, worker bees
return to the hive and relay information to observer
bees about more attractive sources. The observer
bees probabilistically select a source to start their
search, conducting it in the same way as the worker
bees. New solutions are retained only when the
quality improves on the given parameters. The search
process continues until a given number of iterations
is reached [43].

Table. Comparison of optimization methods

Dual annealing method

Dual annealing is a stochastic global optimization
method that is an extension of the simulated annealing
algorithm [44]. The method is designed to improve the
efficiency of finding the global optimum by using a local
search algorithm in addition to the simulated annealing
procedure. This approach improves the accuracy of
finding the optimal solution, particularly in problems
with a large number of local extrema.

The basic principle of dual annealing implies
the initial application of the stochastic global search
process based on the principles of thermodynamic
annealing.  Simulated annealing  successfully
determines the region of the solution space in which the
global optimum is located, although not guaranteeing
the exact solution inside this region. To overcome
this limitation, the dual annealing algorithm applies
a local optimization method to the solution found
by simulated annealing in the final step. The local
search enables the refinement of the solution found,
minimizing the risk of missing the global optimum
due to insufficient exploration of a limited region of
the solution space.

The dual annealing algorithm is successfully
applied in problems where the search space is
complex and multidimensional, containing many local
extrema. Dual annealing demonstrates high efficiency
in engineering when solving design optimization
problems, in development of complex technological
systems, or in tuning hyperparameters in machine
learning models. Its ability to combine the advantages
of global and local search makes this method versatile
and solvable.

Nevertheless, a detailed study of evolutionary
optimization methods is a separate area of scientific
research.

A comparative analysis of optimization methods is
presented in the table.

Method Type Field of application Advantages Disadvantages
. L Simulation of random .
Stochastic optimization u o . . Requires a large number
. . processes, probability Simple, versatile, .
modeling Stochastic R o . of calculations, can be
estimation, optimization high accuracy . .
by Monte Carlo method computationally expensive
of complex systems
Optimization Estimation of the model Requires knowledge of the target
by the maximum Deterministic arameters based on data Accuracy, efficiency | function form, can be sensitive
likelihood method p to the choice of initial values
Obtimization Probability analysis, Accuracy, flexibility, | Requires knowledge
iana esian models Deterministic | consideration of a priori consideration of the target function form,
Y data, forecasting of a priori data can be computationally expensive
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Table. Continued

Method Type Field of application Advantages Disadvantages
. . . S . . Requires knowledge of the target
Differential evolution . Global optimization Efficiency, resistance qau & - a1g
Evolutionary . . . function form, can be sensitive
method of the multivariate functions |to local minima .
to parameter selection
. P o . . Stability to local Requires a large number
Genetic optimization . Finding optimal solutions vty . q A8
. Evolutionary . minima, solving of calculations, can be
algorithm in complex problems Lo . .
multicriteria tasks computationally expensive
S Simulation of metal . . Requires a large number
Global optimization . v . Efficiency, resistance qu . genu
. . Evolutionary | annealing process to find . of calculations, can be
method with annealing o to local minima . .
the global minimum computationally expensive
Collective search .
. . . . . Requires a large number
Particle swarm . for optimal solutions, Efficiency, resistance .
L Evolutionary . . . of calculations, can be
optimization method simulation of the bee swarm | to local minima . .
. computationally expensive
behavior
T . . Requires a large number
Ant colony optimization . Shortest paths search, route | Efficiency, resistance .
Evolutionary L - of calculations, can be
method optimization to local minima . .
computationally expensive
e Simulating the behavior of . . Requires a large number
Artificial bee colony . & Efficiency, resistance q . g
Evolutionary | scout bees and forager bees . of calculations, can be
method . to local minima . .
to find solutions computationally expensive
. . Requires a large number
. . Use of two temperature Efficiency, resistance .
Dual annealing method | Evolutionary . of calculations, can be
modes to local minima . .
computationally expensive
. . Requires knowledge
Event tree-based . Risk analysis, assessment of o d 5
e . Stochastic ... |Accuracy, flexibility | of the target function form,
optimization simulation event occurrence probability . .
can be computationally expensive
Interpolation . Requires knowledge
RO . Modeling of complex o ;
optimization of the Stochastic ng ol comple Accuracy, flexibility | of the target function form,
e probability distributions . .
probability distributions can be computationally expensive
Mixed-integer . P Requires knowledge
xec-ntes L Solving optimization tasks . d 5
optimization Deterministic s . Accuracy, efficiency | of the target function form,
. with discrete variables . .
programming can be computationally expensive
S Analysis and optimization of Requires knowledge
Optimization in game- s .. . I .
theoretic models Deterministic | strategies in the competitive | Accuracy, flexibility | of the target function form,
environment can be computationally expensive
. T . Requires knowledge
Discrete event and . Optimization of dynamic o qu wieds
. Stochastic i1 g Accuracy, flexibility | of the target function form,
hybrid models systems with discrete events . .
can be computationally expensive

Stochastic methods are used in various fields due to

Evolutionary algorithms work by creating candidate
populations, subjecting them to evolutionary operators
such as crossbreeding, mutation, and selection
to gradually improve the population toward the
optimization of a given function. The methods can also
be used for multicriteria optimization when multiple
target functions need to be considered.

their capacity to estimate model parameters, account for
various probabilistic factors, and for model fitting.

In deterministic optimization methods, the process
is completely defined and predictable. Deterministic
optimization algorithms seek to find a solution by
following a strictly defined set of rules or procedure.

Russian Technological Journal. 2025;13(4):78-94
88



Modern optimization methods
and their application features

Salbek M. Beketov
etal.

On the basis of the conducted review, the following
algorithm for selecting the necessary optimization
method can be proposed:

o first, determine the quality of the input data,
completeness of the sample, and the number of
attributes to be considered;

e then, select a group of methods based on a posteriori
or approximation estimation;

e considertheapplication area, estimate the complexity
of the system, and select the optimization object;

¢ finally, select the method depending on the task and
expected results.

CONCLUSIONS

In this article, we carry out an analytical review of
optimization methods and provide their classification.
The methods under consideration are distinguished
into two main groups: those based on the estimation of
a posteriori distribution parameters, and those based

on an inaccurate and approximation estimation. The
advantages and disadvantages of each method in terms
of'its applicability in simulation modeling are discussed.

The results of the study can be used when conducting
scientific research in the field of model optimization
problems and for the practical tasks of developing
models and decision-support systems on their basis.

Future research should be aimed at a detailed study
of evolutionary optimization methods and a comparison
of the performance and applicability of optimization
methods based on various models.
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