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Abstract

Objectives. The paper addresses the problem of applying neural networks for object detection in radar images
and their recognition under conditions of limited computational resources. The aim was to investigate the speed
and recognition quality of YOLO! neural network models in solving object detection and classification tasks in radar
images in order to evaluate the feasibility of their practical implementation on a microcomputer with a neural
processor.

Methods. Machine learning, object detection, and classification techniques were used to detect and classify objects
in a radar image.

Results. The study comparedthe speed and recognition quality of the 5th, 8th,and 11th generationYOLO neural
network models with varying numbers of trainable parameters (nano-, small-, medium-, large-, and extra-
large-sized) to assess their potential use on a microcomputer with a neural processor. As a result of comparing
various YOLO models using evaluation metrics, YOLOv11n (0.925), YOLOv5I (0.889), and YOLOv11s (0.883)
showed the highest precision metric; YOLOv5n (0.932), YOLOv11n (0.928), and YOLOv11s (0.914) showed
the highest recall metric; YOLOvi1s (0.961), YOLOv5n (0.954), and YOLOv11n (0.953) showed the
highest mAP50 metric; and YOLOv5n (0.756), YOLOv11s (0.74), and YOLOv5I (0.727) showed the highest
mAP50-95 metric.

Conclusions. The conducted research confirmed the feasibility of running YOLO neural network models
on a microcomputer with a neural processor, provided that the computational resources of the microcomputer
match the computational requirements of the neural networks. The ROC-RK3588S-PC microcomputer
(Firefly Technology Co., China) provides up to 6 TOPS of performance, allowing the use of YOLOv5n (7.1 GFLOPS),
YOLOv11n (6.3 GFLOPs), and YOLOv11s (21.3 GFLOPs) models.
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T You Only Look Once is a series of neural network models for the real-time object detection.
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Pesiome

Llenu. B cTatbe paccmaTtpuBaeTcst NnpobnemMa NpUMeEHEHUS HEMPOHHbIX CETEN AN 06HapyXeHWs 1 knaccudbukaumm
00bEKTOB HAa PaamMoSIoKaLLMOHHbIX N30OPaAXEHUSAX B YCIOBUSAX OFPaHUYEHHbIX BbIYMCANTENLHBLIX pecypcoB. Llenbio
paboThl SBASETCA UCCNEAoBaHME BLICTPOASNCTBISA U TOYHOCTU MOAENel HelPOHHLIX ceTelt YOLO? npu pelueHum
3aa4 obHapyxeHus 1 knaccnudunkaumm o6bekToB Ha PaaN0OSIOKaLLMOHHbIX N300paXeHUsX AN OLEHKN BO3MOXHO-
CTeln NpakTU4eCcKom peann3aumm Ha MUKPOKOMMbIOTEPE C HEMPOHHBIM MPOLLECCOPOM.

MeTopabl. B paboTe ncnonb3oBanMcb METOAbl MaLLMHHOINO 00y4yeHus, 0BHapyXeHUs 1 knaccudbukaumm o6beKTOB
Ha 1306paxeHnn.

PesynbTaTtbl. Pe3ynbTatoM paboThl ABASETCS OLEHKA U CPpaBHEHME ObICTPOLAENCTBUS U TOYHOCTU MOAENEN Hell-
poHHbIx ceTen YOLO 5-ro, 8-ro u 11-ro nokoneHui ¢ pasHbiM KONM4ecTBOM 00y4aeMblx napameTpoB (Mogenun nano,
small, medium, large, extra large) ans nccnepoBaHns BO3MOXHOCTU MX MCMOb30BAHUS HA MUKPOKOMMbIOTEPE
C HEeMpOoHHbLIM Npoueccopom. Mpu cpaBHeHUM pasnunyHbix mogener YOLO no MeTpuke OUEHKM TOYHOCTM nydLune
pe3ynbTtathl nokasann mogenu YOLOv11n (0.925), YOLOvSI (0.889), YOLOv11s (0.883); no MeTpuke NOAHOTHI —
YOLOv5n (0.932), YOLOv11n (0.928), YOLOv11s (0.914); no metpmke mAP50 - YOLOv11s (0.961), YOLOv5n (0.954),
YOLOv11n (0.953); no meTtpuke mAP50-95 — YOLOv5n (0.756), YOLOv11s (0.74), YOLOvVSI (0.727).

BoiBoabl. [poBeAeHHbIE MCCNEfOBaHUSA MOKa3biBAIOT BO3MOXHOCTb MPUMEHEHUS MOAENEN HEMPOHHbIX ce-
Tern YOLO Ha MUKPOKOMMbIOTEPE C HEMPOHHLIM NPOLECCOPOM MPU COOTBETCTBMN BbIHUCIUTESbHbIX PECYPCOB
MUKPOKOMMbIOTEPA U BbIYUCINTENbHBLIX TPEOOBAHMIA HEMPOHHLIX ceTeill. MukpokomnbioTep ROC-RK3588S-PC
(Firefly Technology Co., Kutaii) obecneunBaet 6bicTponelicteue 0o 6 TOPS (Tepa-onepaunii B cekyHay), 4TO
no3eongeT npumeHaTb moaenn YOLOvSn (7.1 GFLOPs), YOLOv11n (6.3 GFLOPs), YOLOv11s (21.3 GFLOPs).

2 You only look once (YOLO) — cepusi HelipoceTeBbIX Moaeneit Ans 3aaun AeTekumn o6bekTos. [You Only Look Once
is a series of neural network models for the real-time object detection.]
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KnioueBble cnoBa: C/UCTEMbl pacrno3HaBaHUs 00pa30B, HEMPOHHLIE CETU, PaAVONIOKALMOHHOE MU300paxeHue,

aNropuTMbl MaLLIMHHOMO 0ByYeHNst

Ana untupoBanusa: KpacHonepoBa A.C., Teepaooxnetos A.C., KapTtawos A.A., Bebep B.W., Kynpuu, B.IO. Nccnepo-
BaHNEe 3PDEKTUBHOCTU MPUMEHEHNSA MOAEenNel HepoHHbix ceTen YOLO ona pacno3HaBaHMs OOBEKTOB Ha panuvo-
JNIOKaUMOHHBIX n3obpaxeHusx. Russian Technological Journal. 2025;13(4):25-36. https://doi.org/10.32362/2500-

316X-2025-13-4-25-36, https://www.elibrary.ru/M\WWWVCJ

MpospayHocTb hMHAHCOBOM AeATEeNbHOCTU: ABTOPbI HE UMEIOT PUHAHCOBOM 3aMHTEPECOBAHHOCTM B MPEACTaB/EH-

HbIX MaTepuanax niam MetToaax.

ABTOpbI 329BNASI0OT 06 OTCYTCTBUN KOHDINKTA MHTEPECOB.

INTRODUCTION

At present, airborne synthetic aperture radar (SAR)
systems are widely used to obtain radar images of
terrain [1, 2]. The examples of practical applications of
radar imagery produced by SAR airborne radar systems
installed on unmanned aerial vehicles (UAVs) include
the following:

e vehicle location during search and rescue operations,
movement control and security of production plants,
storage terminals, fields, ports, and urban areas
(parks, water conservation areas), as well as flood
detection;

e remote monitoring of extended infrastructure,
particularly in remote areas, including oil and gas
pipelines, power lines, and railway infrastructure;

e automated creation of  digital elevation
maps (3D models) of the Earth’s surface and
classification of the Earth’s cover, such as farmland,
town, village, water, forest, and road objects.

As a rule, data processing and formation of radar
images is performed in stationary conditions using
high performance computers. However, in cases
where a higher efficiency is required, radar image
processing can be carried out on board the UAV. For
example, the efficiency of search and rescue operations
can be improved by onboard radar image processing
and formation by significantly reducing the duration
of vehicle search and increasing the efficiency of
assistance. This operation can be implemented using
neural networks installed on the microcomputers (MC)
of the onboard equipment.

The efficiency of ground object detection can be
enhanced using various-purpose sensors on the UAV.
A new approach to the creation of a multifunctional
airborne radioelectronic complex includes the use of
various radar modes, the integration of the locator
with optoelectronic means, including infrared, as well
as the use of airborne radar stations based on synthetic
aperture. Modern radar stations ensure high resolution
and are capable of performing the tasks of detection
and recognition of hidden objects, thus supplementing
optical and infrared systems [3].

Radar surveillance using SAR technology is
currently considered to be an effective method of
remote monitoring of objects of interest, resulting in
highly informative 2D radar images. The possibility of
obtaining these images is not limited by time of day or
meteorological conditions [4, 5].

The basic principles of radar image formation
are well known and have been thoroughly discussed
previously? [6, 7]. When processing SAR data, account
should be taken of the specifics of radar imaging,
such as:

e geometric and radiometric distortions on the formed
radar images;

o the presence of radar shadows;

e speckle noise formed as a result of coherent
summation of reflected electromagnetic waves from
spatially random scattering sources falling within
the SAR resolution element;

e the difference in reflective properties of objects in
different frequency ranges;

e radar imaging mode;

e operating frequency range and signal polarization.
At the same time, the basic principles and

characteristics of radar image formation are important
for the creation of image databases to be further used
for training, validation, and testing of neural network
models.

The relevance of the research presented in our
paper is confirmed by a number of publications. The
effectiveness of neural networks for maritime object
detection and recognition was investigated in [8—10].
Thus, the work [8] provided accuracy estimates of the
YOLOvV5x neural network* based on the SAR Ship
Dataset database [11] using appropriate metrics to
evaluate the accuracy of its performance, while [9]
investigated neural networks for ship detection and
recognition. The results of different neural network

3 Fundamentals of processing radar data from Earth remote
sensing. https://habr.com/ru/articles/787074 (in Russ.). Accessed
December 02, 2024.

4 You Only Look Once is a series of neural network models
for the real-time object detection.
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models, such as YOLOv4, YOLOv7, YOLOV7-tiny,
RetinaNet, Cascade R-CNN, SSD, and OE-YOLO, were
described in quantitative terms. In [10], neural networks
for object detection and recognition from moving and
stationary target acquisition and recognition (MSTAR)?
databases were analyzed. Different neural network
models and their performance characteristics were
evaluated using the following metrics: Recall, Precision,
mAP50, and mAP50-95.

In this paper, we compare the speed and recognition
quality of YOLO neural network models of the 5th,
8th, and 11th generation with different numbers of
trained parameters and evaluate the feasibility of their
application in an MC with a neural processor.

CREATING A RADAR IMAGE DATABASE

Radar image databases are conventionally created
using three main approaches, including:

e cxperimental imaging of objects of interest on the
Earth’s surface by means of onboard SAR, taking
into account various factors affecting the formation
of radar images;

e simulation of the propagation processes of radio
waves reflected from the Earth’s surface and further
processing of the received signals in accordance
with the algorithms of SAR operation;

e search of SAR-obtained radar images in open
sources.

The former approach provides the most accurate
radar image database, although requiring extensive
computational and time budgets. Radar image simulation
is a complex process whose efficiency depends on
numerous factors, such as the complexity of simulating
reflections from terrain and extended objects, as well as
the formation of a large flow of radar information from
SAR receivers, etc. [12, 13].

In this research, we apply the latter approach, which
relies on open-source radar image databases to solve
the problem. To that end, the open part of the MSTAR
database was used. The radar images in this database are
formed according to the characteristics of a radar system
and the conditions of image formation (see Table 1).

The MSTAR database comprises two datasets,
namely:

e MSTAR target, where each image has a plain
background and a vehicle in its middle; radar images
are taken from different angles of a scene;

e MSTAR clutter, where radar images of rural areas
with roads and forests are taken without vehicle
images.

5 https://www.mathworks.com/help/radar/ug/sar-target-clas-
sification-using-deep-learning.html. Accessed December 02,
2024.

Table 1. Radar system characteristics and imaging
conditions

Characteristics Value
Frequency range X band
SCiglltaelr frequency of the sounding 9.6 GHz
Bandwidth of the sounding signal 591 MHz
Radiation and reception polarization Horizontal

Angle and azimuth resolution 1 foot (~30.5 cm)

Shooting mode Spotlight

Carrier Aircraft (Twin Otter)
Carrier speed 140-170 km/h
Inclined range ~5 km
grrcl)%ll:; ;lfasnheooting location from 15°_450
Shooting angles in azimuth plane 0°-360°
Weather conditions Clear, dry
Terrain Plain
Vegetation Grassy, low
e S
US Army

installation, Redstone
Arsenal, Huntsville

Shooting location

The MSTAR database includes 8890 images of
vehicles, 2539 images of radar reflectors, and 100 images
of rural areas. The complete list of radar images in the
database is presented in Table 2.

Examples of radar images from the MSTAR target
database are shown in Fig. 1.

Azimuth 50° Azimuth 70°

Azimuth 38°

Azimuth 4°
Fig. 1. Examples of radar images
from the MSTAR target database
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Table 2. List of radar images in the MSTAR database

Target Description Angles of site, © Remarks
15 3 sets of 195 images
8 sets of 274 images
17 3 sets of 230 images
8 sets of 248 images
T-72 T-72 tank

30 1 set of 288 images
1 set of 133 images
45 1 set of 303 images
1 set of 120 images
. . . . 15 3 sets of 196 images
BMP2 BMP 2 is a tracked infantry fighting vehicle 17 3 sets of 235 images
. . 15 1 set of 195 images
BTR-60 BTR-60 is an armored personnel carrier (APC) 17 1 set of 256 images
. 15 1 set of 196 images
BIR-70 BIR-701s APC 17 1 set of 233 images
15 1 set of 274 images
o s . 17 1 set of 299 images
251 2S1 Gvozdika (“Carnation”) is a self-propelled howitzer 30 1 set of 288 images
45 1 set of 303 images
15 1 set of 274 images
17 1 set of 298 images
BRDM-2 BR]?M-Z (GAZ-41) is an armored reconnaissance scout 20 1 set of 287 images
vehicle 1 set of 133 images
45 1 set of 303 images
1 set of 120 images
15 1 set of 273 images
62 T-62 tank 17 1 set of 299 images
15 1 set of 274 images
17 1 set of 299 images
7SU 23 4 ZSU-23-4 “Shilka” is a self-propelled anti-aircraft gun 20 1 set of 288 images
o set o images

(SPAAG) 1 f118 imag
45 1 set of 303 images
1 set of 119 images
. e 15 1 set of 274 images
ZIL131 ZIL-131 is an expanded mobility truck 17 1 set of 299 images
. 15 1 set of 274 images
D7 D7 is a tractor-mounted dozer 17 1 set of 299 images
15 1 set of 274 images
16 1 set of 286 images
17 1 set of 288 images
Construction of geometric figures including basic radar 29 1 set of 210 images
SLICY reflector shapes such as flat plate, dihedral, trihedral, and 30 1 set of 288 images
cylinder 31 1 set of 323 images
43 1 set of 255 images
44 1 set of 312 images
45 1 set of 303 images
CLUTTER Radar images of Huntsville city and surroundings 15 1 set of 100 images
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Fig. 2. Rural image from MSTAR cluttered sample

A sample image from the MSTAR clutter sample is
shown in Fig. 2.

The radar images of the ground surface (MSTAR
clutter) and of the vehicles (MSTAR target) are produced
under the same conditions. This allows the technique of
placing the objects on the background of the rural area to
be applied, similar to that reported in [10].

The process of image fusion and generation is
performed in three steps [10]:

e selection of the object radar image (MSTAR
target) locations on the rural radar image (MSTAR
clutter);

e correction of the pixel brightness of the object radar
image (MSTAR target) and the selected section of
the rural radar image (MSTAR clutter);

o fusionoftheobjectradarimage (MSTAR target)and
the selected rural radar image (MSTAR clutter).
The MSTAR target angle is equal to the MSTAR

clutter angle.

The objects placed in the radar image correspond to
the following classes: Class 0 is aradar reflector (SLICY),
Class 1 is an armored personnel carrier (APC), Class 2 is
an armored reconnaissance scout vehicle, Class 3 is
a self-propelled anti-aircraft gun (SPAAG), and
Class 4 is a tank. The image from the created database is
shown in Fig. 3.

Following the above steps, a database for solving
the problem of detecting and recognizing objects on
the Earth’s surface is created. The sample consists of

Fig. 3. Example of an image from the created database

350 images with five objects placed on each image.
In total, 300 and 50 images are used for training and
for validation and testing, respectively. For each
image, a text file containing the object coordinates and
information about their class is provided.

The speed and recognition quality of the 5th,
8th, and 11th generation YOLO neural network
models [14] from the Ultralytics® library with
different numbers of trained parameters (nano-,
small-, medium-, large-, and extra-large-sized
models) with the following neural network training
parameters were investigated:

e the number of training epochs for all algorithms

is 40;

e the optimizer is AdamW with a convergence step of

0.001111, with a momentum equal to 0.9.

TRAINING RESULTS AND PERFORMANCE
EVALUATION OF NEURAL NETWORKS

The metrics [9] was used to monitor the training
process of the model and to evaluate its performance in
the training and validation datasets:

1. Precision is the share of objects that are labelled
as positive by the classifier and that are actually
positive:

6 Ultralytics | Revolutionizing the World of Vision AL https://
www.ultralytics.com/. Accessed December 02, 2024.
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. TP
Precision = ————, (1)
TP + FP

where TP (True Positive) is the share of correct
classifications belonging to a positive class and
FP (False Positive) is the share of incorrect
classifications belonging to a positive class (type II
error, false alarm). This metric evaluates the model
for type II errors.

2. Recall is the share of objects of a given class out of
all objects of a given class found by the algorithm:

Recall = l, 2
TP +FN

where FN (False Negative) is the share of

misclassifications not belonging to a positive

class (type I error, target omission). This metric
evaluates the model for type I errors.

The precision and recall values are obtained for
different model confidence thresholds (confidence
levels). These thresholds are set manually and the
prediction of the bounding box and the prediction of
the model class are estimated simultaneously. At higher
thresholds, there are fewer detector responses. However,
this will reduce the type II error (FP), thus increasing
the accuracy but decreasing the completeness value. It is
therefore possible to plot Precision against Recall. The
average precision (AP) is the area under the Precision—
Recall curve:

AP = [ PR)IR. (3)

The mean average precision (mAP) is the area under
the Precision—Recall curve weighted across all classes:

1 N
mAP = — > AP(i). 4)
N i=1

For example, the mAP50-95 metric is a weighted
mean accuracy given the values of ToU € [0.5; 0.95],
where IoU (intersection over union) is a metric of the
degree of intersection between the true bounding box
and the predicted bounding box. When the predicted
bounding box coincides with the true bounding box,
IoU=1.

An example of object recognition in the test image
is shown in Fig. 4.

At the end of training, the best model is considered
to be the one with the highest mAP50-95 metric on the
validation data.

The numerical values of the metrics obtained during
the training of the neural networks of the YOLO family
are given in Table 3.

Comparing different YOLO models showed
the following: the top three models by precision

class 0 0.81

(a)

Fig. 4. Results of object recognition in a radar image
using the YOLOv11s model:
(a) radar image before recognition;
(b) radar image after recognition

are  YOLOvlln (0.925), YOLOv5l (0.889),
and YOLOvlls (0.883). YOLOv5n (0.932),
YOLOvIIn (0.928), and YOLOvIls (0.914) show
the highest recall metric; YOLOvlls (0.961),
YOLOvV5n (0.954), and YOLOvlln (0.953) show
the highest mAP50 metric; and YOLOv5n (0.756),
YOLOv1l1s (0.74), and YOLOvVS1 (0.727) show the
highest mAP50-95 metric.

The analysis of the number of floating-point
operations are represented by a histogram in Fig. 5.

300
250

200
150
100
50 I
0 |

Model n Models  Modelm Modell Model x

Number of floating-point
operations for the models,
N-10°

= YOLOvS YOLOv8 YOLOv11

Fig. 5. Comparison of the number of floating-point
operations for the models under study

The results obtained allow us to conclude that
models 1 and x with more floating-point operations
outperform models n, s, and m in terms of all parameters,
largely due to undertraining of models I and x.

Russian Technological Journal. 2025;13(4):25-36

31



Efficiency of YOLO neural network models applied
for object recognition in radar images

Alena S. Krasnoperova
etal.

Table 3. YOLO neural network model metrics

Neurragor(lie;tlw i Precision Recall mAP50 mAP50-95 Numbef)rc));ggitlilrslg-point
YOLOv5n 0.844 0.932 0.954 0.756 7.1e9
YOLOVSs 0.76 0.808 0.871 0.649 23.8¢9
YOLOvV5m 0.789 0.801 0.889 0.695 64¢9
YOLOV5I1 0.889 0.881 0.933 0.727 134.7¢9
YOLOvV5x 0.725 0.802 0.844 0.678 246e9
YOLOV8n 0.748 0.84 0.897 0.65 8.1e9
YOLOVS8s 0.643 0.79 0.828 0.617 28.4¢9
YOLOvV8m 0.739 0.832 0.871 0.678 78.7¢9
YOLOVSI 0.694 0.806 0.843 0.648 164.8¢9
YOLOvV8x 0.772 0.821 0.895 0.697 257.4e9
YOLOvlIn 0.925 0.928 0.953 0.725 6.3¢9
YOLOvl1ls 0.883 0.914 0.961 0.74 21.3¢9
YOLOvIIm 0.804 0.893 0.91 0.726 67.7¢9
YOLOv11] 0.566 0.7 0.761 0.573 86.6e9
YOLOvI11x 0.63 0.772 0.82 0.627 194.4€9

For the mAP50 and mAP50-95 metrics, the highest
results are achieved using the YOLOv5n, YOLOv1ln,
and YOLOvlls models. In [10], FasterRCNN
(mAP50 = 0.8786), RetinaNet (mAP50 = 0.916),
and different modifications of YOLOvVS5 such as
YOLOvVS basic (mAP50 = 0.9169) and YOLOvS
modified (mAP50 = 0.9555) were used to investigate
recognition accuracy. For comparison, the YOLO neural
network models and the values of the mAP50 metric are
shown in Table 4.

Table 4. The mAP50 metric of neural network models

Neural network model mAP50
YOLOV5n 0.954
YOLOvl1In 0.953
YOLOvlls 0.961

The data presented in Table 4 indicate that the
11th generation YOLO models perform sufficiently well
in solving the problem of ground object detection and
recognition in radar images.

The error matrix for the YOLO neural network
is shown in Fig. 6, which indicates the number of
misclassifications made by the model. The classes as
predicted by the model are labelled on the left, and the true
classes are labelled at the bottom. In addition to the five
classes of recognized objects, there is also a background
class representing the background classification errors.

It can be assumed that images of radar reflectors
were classified as background more often than others,
due to their small effective scattering area compared to
the other classes.

When predicting Class 1, the YOLOv11s model has
the maximum type I error with 5 out of 50 classified as
Class 2 and 6 out of 50 classified as Class 4. Class 4 has
the maximum type II error with 6 objects of Class 1,
3 objects of Class 3, and 3 snippets with background
classified as Class 4.
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Fig. 6. Error matrix for the YOLOv11s neural network

In [15], in order to evaluate the feasibility of using
neural networks on MCs, the number of operations
required by the YOLO model was compared to the
number of operations per second that can be provided
by the MC. The Firefly ROC-RK3588S-PC (Firefly
Technology Co., China) was used as a basis, equipped
with an onboard RK3588 neural processor capable of up
to 6 Tera operations per second (TOPS)’.

The computational resources consumed by a neural
network model on a single input image can be expressed
in terms of Giga float operations (GFLOPs). For
arelevant evaluation, it is necessary to convert TOPS into
a floating-point format, since TOPS defines the number
of operations per second® and GFLOPs defines the
number of floating-point operations with the input image.

The performance of 4 TOPS is approximately equal to the
performance of 1 TFLOPS?; hence, converting 6 TOPS
results in 1.5 TFLOPS. Therefore, the performance of
the ROC-RK3588S-PC MC allows the installation of
YOLOv5n (7.1 GFLOPs), YOLOv11n (6.3 GFLOPs), and
YOLOv11s (21.3 GFLOPs), providing a performance of
more than 10 frames per second, which is a positive result.

CONCLUSIONS

Our research demonstrates that, out of the neural
network models considered, the YOLOv5n, YOLOvVSI,
YOLOvVI11n, and YOLOv11s models produce the highest
results in terms of the following metrics. The difference
in the mAP50-95 metrics between the YOLOVSI
and YOLOvlln models is ~0.003. The difference in
the Precision metric values between YOLOvVS5] and
YOLOv11ls models is ~0.006. The difference in the
computational cost is ~102 floating point operations,
which has a significant impact on performance. The
selected models are therefore YOLOv5n, YOLOv11n,
and YOLOvV11s. According to their computational costs
and the performance of the ROC-RK3588S-PC MC, the
selected models can be recommended for installation on
the MC for real-time operation.

Authors’ contributions

A.S. Krasnoperova—conducting research,
interpreting and summarizing results, writing the text of the
article.

A.S. Tverdokhlebov—interpreting research results,
preparing conclusions.

A.A. Kartashov—defining the research topic and
discussing the final text of the article.

V.l. Weber—planning the research,
results, scientific editing of the article.

V.Y. Kuprits—setting the aims and objectives of the
research, methods of machine learning.

interpreting

7 ROC-RK3588S-PC 8-Core 8K AI Mainboard. https://www.rock-chips.com/a/cn/product/RK35xilie/2022/0926/1656.html.

Accessed December 02, 2024.

8 What is TOPS and TeraFLOPS in AI? https://www.candtsolution.com/news_events-detail/tops-and-teraflops-in-Al/#:~:text=What%20
i8%20TOPS%20in%20A1,peak%20performance%200f%20A1%20hardware. Accessed December 02, 2024.
9 What Is the Relationship Between the Units of Tops and Flops? https:/premioinc.com/blogs/blog/what-is-tops-and-teraflops-in-ai.

Accessed December 02, 2024.

Russian Technological Journal. 2025;13(4):25-36

33


https://www.rock-chips.com/a/cn/product/RK35xilie/2022/0926/1656.html
https://www.candtsolution.com/news_events-detail/tops-and-teraflops-in-AI/#:~:text=What%20is%20TOPS%20in%20AI,peak%20performance%20of%20AI%20hardware
https://www.candtsolution.com/news_events-detail/tops-and-teraflops-in-AI/#:~:text=What%20is%20TOPS%20in%20AI,peak%20performance%20of%20AI%20hardware
https://premioinc.com/blogs/blog/what-is-tops-and-teraflops-in-ai

Efficiency of YOLO neural network models applied Alena S. Krasnoperova
for object recognition in radar images etal.

10.

11.

12.

13.

14.

15.

REFERENCES

. Malmgren-Hansen D., Engholm R., Ostergaard Pedersen M. Training Convolutional Neural Networks for Translational

Invariance on SAR ATR. In: Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar. IEEE;
2016. P. 459-462.

. Cruz H., Véstias M.P., Monteiro J., et al. A Review of Synthetic-Aperture Radar Image Formation Algorithms and

Implementations: A Computational Perspective. Remote Sens. 2022;14(5):1258. https://doi.org/10.3390/rs14051258

. I’in E.M., Polubekhin A.I., Savostyanov V.Yu., Samarin O.F., Cherevko A.G. Airborne multi-functional radar complex for

shot-range UAVs. Vestnik SibGUTI = The Herald of the Siberian State University of Telecommunications and Information
Science. 2017;4:104—109 (in Russ.). https://www.elibrary.ru/item.asp?id=30793295

. Paul V.G., Simonov A.V. Space radar terrain survey and the joint flight of a spacecraft pair. Inzhenernyi zhurnal: nauka i

innovatsii = Engineering Journal: Science and Innovation. 2020;7:1-21 (in Russ.). https://doi.org/10.18698/2308-6033-
2020-7-1999, https://www.elibrary.ru/item.asp?id=43566045

. Khakhulina N.B. Sistemy sbora i obrabotki informatsii rezul tatov geodezicheskikh izyskanii i distantsionnogo zondirovaniya

(Systems of Information Collection and Processing of Geodetic Surveys and Remote Sensing Results). Voronezh: Voronezh
State Technical University; 2022. 78 p. (in Russ.).

. Kondratenkov G.S. (Ed.). Radiolokatsionnye stantsii vozdushnoi razvedki (Airborne Reconnaissance Radar Stations).

Moscow: Voenizdat; 1983. 154 p. (in Russ.).

. Kanaschenkov A.I., Merkulov V.I. (Eds.). Radiolokatsionnye sistemy mnogofunktsional 'nykh samoletov: V 3 t. T. 1. RLS —

informatsionnaya osnova boevykh deistvii mnogofunktsional 'nykh samoletov. Sistemy i algoritmy pervichnoi obrabotki
radiolokatsionnykh signalov (Radar Systems of Multi-Functional Aircraft: in 3 v. V. 1. Radar Systems — Information Basis
for Combat Operations of Multi-Functional Aircraft. Systems and Algorithms for Primary Processing of Radar Signals).
Moscow: Radiotekhnika; 2006. 656 p. (in Russ.).

. Kupryashkin I.F., Mazin A.S. Classification of military equipment targets on radar images generated in noise interference

conditions using a convolutional neural network. Vestnik Kontserna VKO Almaz-Antey. 2022;1:71-81 (in Russ.). https://
www.elibrary.ru/item.asp?id=48138675

. Chen D., JuR., Tu C., Long G., Liu X., Liu J. GDB-YOLOVS5s: Improved YOLO-based Model for Ship Detection in SAR

Images. IET Image Process. 2024;18(11):2869-2883. https://doi.org/10.1049/ipr2.13140

Song Y., Wang S., Li Q., Mu H., Feng R., Tian T., Tian J. Vehicle Target Detection Method for Wide-Area SAR Images
Based on Coarse-Grained Judgment and Fine-Grained Detection. Remote Sens. 2023;15(13):3242. https://doi.org/10.3390/
rs15133242

Zhang T., Zhang X., LiJ., Xu X., Wang B., Zhan X., Xu Y., Ke X., Zeng T., Su H., et al. SAR Ship Detection Dataset (SSDD):
Official Release and Comprehensive Data Analysis. Remote Sens. 2021;13(18):3690. https://doi.org/10.3390/rs13183690
Karmanova N.A., Karmanov A.G., Petrov A.A. Development of a synthetic aperture radar model for unmanned aerial
vehicles for remote sensing of woodlands. Informatsiva i Kosmos = Information and Space. 2021;4:114-122 (in Russ.).
https://www.elibrary.ru/item.asp?edn=esiivj

Bryzgalov A.P., Koval’chuk I.V., Khnykin A.V., Shevela [.A., Yusupov R.G. Simulation of Synthetic Aperture Radar Assigned
to Solving the Problems of Its Internal and External Design. Trudy MAI 2011;43:25 (in Russ.). https://www.elibrary.ru/item.
asp?id=15632049

Terven J., Cordova-Esparza D.-M., Romero-Gonzalez J.-A. A comprehensive review of YOLO architectures in computer
vision: from YOLOv1 to YOLOvS and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023;5(4):1680—-1716. https://doi.
org/10.3390/make5040083

Baller S., Jindal A., Chadha M., Gerndt M. DeepEdgeBench: benchmarking deep neural networks on edge devices. In:
Proceedings of the 2021 IEEE International Conference on Cloud Engineering (IC2E). IEEE; 2021. P. 20-30. https://doi.
org/10.1109/IC2E52221.2021.00016

CMNCOK JIUTEPATYPbI

. Malmgren-Hansen D., Engholm R., Ostergaard Pedersen M. Training Convolutional Neural Networks for Translational

Invariance on SAR ATR. In: Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar. IEEE;
2016. P. 459-462.

Cruz H., Véstias M.P., Monteiro J., et al. A Review of Synthetic-Aperture Radar Image Formation Algorithms and
Implementations: A Computational Perspective. Remote Sens. 2022;14(5):1258. https://doi.org/10.3390/rs14051258

. Wneun EM., IMony6exun A.U., CaBocthsinoB B.1O., Camapun O.®., Ueperko A.I. ManorabapuTHbIii MHOTO(DYHKI[HOHAIIb-

Hblil OopToBoii PJIK U1t 6eCIMIOTHBIX JeTaTeNbHbIX allapaToB Maioi nanbHoctu. Becmuux Cubl VTH. 2017;4:104—109.
https://www.elibrary.ru/item.asp?id=30793295
IMons B.I., Cumonos A.B. Kocmudeckasi paJuooKalliOHHAsl ChbeMKa pelibepa 1 COBMECTHBIN MOJIET Mapbl KOCMUYECKUX
anmaparoB. HMuoicenepuuiil acypran: Hayka u unnosayuu. 2020;7:1-21. https://doi.org/10.18698/2308-6033-2020-7-1999,
https://www.elibrary.ru/item.asp?id=43566045

. Xaxymuna H.b. Cucmemur coopa u obpabomxu ungpopmayuu pe3yipmamos 2e00e3uteckux usblCKaHull U OUCAHYUOHHO2O

30HOUposanus. BopoHek: BopoHEKCKUI rocy1apCTBEHHBINH TeXHUYeCKUl yHUBepcuteT; 2022. 78 c.

34

Russian Technological Journal. 2025;13(4):25-36


https://doi.org/10.3390/rs14051258
https://www.elibrary.ru/item.asp?id=30793295
https://doi.org/10.18698/2308-6033-2020-7-1999
https://doi.org/10.18698/2308-6033-2020-7-1999
https://www.elibrary.ru/item.asp?id=43566045
https://www.elibrary.ru/item.asp?id=48138675
https://www.elibrary.ru/item.asp?id=48138675
https://doi.org/10.1049/ipr2.13140
https://doi.org/10.3390/rs15133242
https://doi.org/10.3390/rs15133242
https://doi.org/10.3390/rs13183690
https://www.elibrary.ru/item.asp?edn=esiivj
https://www.elibrary.ru/item.asp?id=15632049
https://www.elibrary.ru/item.asp?id=15632049
https://doi.org/10.3390/make5040083
https://doi.org/10.3390/make5040083
https://doi.org/10.1109/IC2E52221.2021.00016
https://doi.org/10.1109/IC2E52221.2021.00016
https://doi.org/10.3390/rs14051258
https://www.elibrary.ru/item.asp?id=30793295
https://doi.org/10.18698/2308-6033-2020-7-1999
https://www.elibrary.ru/item.asp?id=43566045

Efficiency of YOLO neural network models applied Alena S. Krasnoperova
for object recognition in radar images etal.

10.

11.

12.

13.

14.

15.

Paouonoxkayuonnvie cmanyuu 030ywnoil paseeoxu; non pen. I.C. Konaparenkosa. M.: Boenusnart; 1983. 154 c.
Paouonoxayuonnvle cucmemvl MHOLOPYHKYUOHANbHBIX camoremos: B 3 T. T. 1. P/IC — unghopmayuonnas ocnosa 60e6bix
oeticmeuti MHO20Q)YHKYUOHANbHBIX camonemos. Cucmemvl i aneopummbl NEPEULHOU 00pabOmMKU paOUOIOKAYUOHHBIX CUSHA-
no0e; o pea. AWM. Kanamenxkosa, B.I1. Mepkynosa. M.: Pagunorexnunka; 2006. 656 c.

Kynpsimkun 1.@., Masun A.C. Knaccuduxanys o0beKTOB BOSHHOM TEXHUKU € UCIIOIb30BAHUEM CBEPTOUHON HEHPOHHOM
CETH Ha PaJMOJIOKAIIMOHHBIX M300pakeHHSIX, C(OOPMHUPOBAHHBIX B YCIOBHUSIX IIYMOBBIX momex. Becmuuk Konyepna BKO
«Anmaz — Aumeiin. 2022;1:71-81. https://www.elibrary.ru/item.asp?id=48138675

Chen D., Ju R., Tu C., Long G., Liu X., Liu J. GDB-YOLOVS5s: Improved YOLO-based Model for Ship Detection in SAR
Images. IET Image Process. 2024;18(11):2869-2883. https://doi.org/10.1049/ipr2.13140

Song Y., Wang S., Li Q., Mu H., Feng R., Tian T., Tian J. Vehicle Target Detection Method for Wide-Area SAR Images
Based on Coarse-Grained Judgment and Fine-Grained Detection. Remote Sens. 2023;15(13):3242. https://doi.org/10.3390/
rs15133242

Zhang T., Zhang X., LiJ., Xu X., Wang B., Zhan X., Xu Y., Ke X., Zeng T., Su H., et al. SAR Ship Detection Dataset (SSDD):
Official Release and Comprehensive Data Analysis. Remote Sens. 2021;13(18):3690. https://doi.org/10.3390/rs13183690
Kapmanosa H.A., Kapmanos A.T", ITerpoB A.A. Pa3zpaboTka Mozienu pajiapa ¢ CHHTE3UPOBAaHHOM anepTypoil OecruiIoTHOro
JICTATeNILHOTO afmapara JUis AUCTAaHIMOHHOTO 30HAUPOBAHHUS JIECHBIX MAaCCUBOB. MHghopmayus u Kocmoc. 2021;4:114-122.
https://www.elibrary.ru/item.asp?edn=esiivj

Bpesramos A.IL., KoBansayk U.B., Xuaeikua A.B., [llesena U.A., FOcynos P.I. MonenmupoBanne pagnonokaTopa ¢ CHHTE3HU-
POBaHHOM anepTypoi Py PELIEHNH 3a/]a4 €r0 BHYTPEHHEr0 U BHEIITHET0 IpoeKTupoBanus. Tpyov: MAH. 2011;43:25. https://
www.elibrary.ru/item.asp?id=15632049

Terven J., Cérdova-Esparza D.-M., Romero-Gonzalez J.-A. A comprehensive review of YOLO architectures in computer
vision: from YOLOv1 to YOLOvVS and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023;5(4):1680—1716. https://doi.
org/10.3390/make5040083

Baller S., Jindal A., Chadha M., Gerndt M. DeepEdgeBench: benchmarking deep neural networks on edge devices.
In: Proceedings of the 2021 IEEE International Conference on Cloud Engineering (IC2E). IEEE; 2021. P. 20-30. https://doi.
org/10.1109/1C2E52221.2021.00016

About the Authors

Alena S. Krasnoperova, Engineer of the Student Design Bureau of Intelligent Radio Engineering Systems,

Department of Radio Engineering Systems, Tomsk State University of Control Systems and Radioelectronics (40,
Lenina pr., Tomsk, 634050 Russia). E-mail: alenacergeevna2@icloud.com. RSCI SPIN-code 9055-6959, https://
orcid.org/0009-0001-5568-8290

Alexander S. Tverdokhlebov, Engineer of the Student Design Bureau of Intelligent Radio Engineering Systems,
Department of Radio Engineering Systems, Tomsk State University of Control Systems and Radioelectronics (40,
Lenina pr., Tomsk, 634050 Russia). E-mail: tverdohlebov.a.923-®@e.tusur.ru. https://orcid.org/0009-0008-2250-6375

Alexey A. Kartashov, Engineer of the Student Design Bureau of Intelligent Radio Engineering Systems,
Department of Radio Engineering Systems, Tomsk State University of Control Systems and Radioelectronics (40,
Lenina pr., Tomsk, 634050 Russia). E-mail: kartashov.a.923-m®@e.tusur.ru. https://orcid.org/0009-0009-6005-7539

Vladislav 1. Weber, Postgraduate Student, Assistant, Department of Radio Engineering Systems, Tomsk
State University of Control Systems and Radioelectronics (40, Lenina pr., Tomsk, 634050 Russia). E-mail:
vladweber00@gmail.com. RSCI SPIN-code 3880-2107, https://orcid.org/0000-0002-0275-4127

Vladimir Y. Kuprits, Cand. Sci. (Eng.), Associate Professor, Head of the Student Design Bureau of Intelligent
Radio Engineering Systems, Department of Radio Engineering Systems, Tomsk State University of Control Systems
and Radioelectronics (40, Lenina pr., Tomsk, 634050 Russia). E-mail: vladimir.y.kuprits@tusur.ru. RSCI SPIN-code
4855-3318, https://orcid.org/0000-0001-7190-3213

Russian Technological Journal. 2025;13(4):25-36
35


https://www.elibrary.ru/item.asp?id=48138675
https://doi.org/10.1049/ipr2.13140
https://doi.org/10.3390/rs15133242
https://doi.org/10.3390/rs15133242
https://doi.org/10.3390/rs13183690
https://www.elibrary.ru/item.asp?edn=esiivj
https://www.elibrary.ru/item.asp?id=15632049
https://www.elibrary.ru/item.asp?id=15632049
https://doi.org/10.3390/make5040083
https://doi.org/10.3390/make5040083
https://doi.org/10.1109/IC2E52221.2021.00016
https://doi.org/10.1109/IC2E52221.2021.00016
mailto:alenacergeevna2@icloud.com
https://orcid.org/0009-0001-5568-8290
https://orcid.org/0009-0001-5568-8290
mailto:tverdohlebov.a.923-@e.tusur.ru
https://orcid.org/0009-0008-2250-6375
mailto:kartashov.a.923-m@e.tusur.ru
https://orcid.org/0009-0009-6005-7539
mailto:vladweber00@gmail.com
https://orcid.org/0000-0002-0275-4127
mailto:vladimir.y.kuprits@tusur.ru
https://orcid.org/0000-0001-7190-3213

Efficiency of YOLO neural network models applied Alena S. Krasnoperova
for object recognition in radar images etal.

06 aBTOpPax

KpacHonepoBa AneHa CepreeBHa, NHXEHEP CTYyOEHYEeCKOro KOHCTPYKTOPCKOro 6topo «HTennektyanbHble
pagmnoTexHuyeckme cuctembl», kadeapa pagmoTexHudeckmux cuctem, @FAQY BO «ToMcKuid rocynapCTBEHHbIN
YHUBEPCUTET CUCTEM YMpPaBieHUs 1 pPaamoanekTpoHuku» (634050, Poccusa, Tomck, np. JleHunna, g. 40). E-mail:
alenacergeevna2@icloud.com. SPIN-kog PVHL]L 9055-6959, https://orcid.org/0009-0001-5568-8290

Teepaoxne6oB AnekcaHgp CepreeBu4, MHXeEHEp CTyOeHYEeCKOro KOHCTPYKTOPCKOro 60po «MHTennekry-
anbHble paguoTeXHUYeckne CUCTeEMbI», kKadenpa pagmnotexHmiecknx cuctem, raOy BO «TomMckumin rocyaapCTBEH-
HbIA YHUBEPCUTET CUCTEM YNpPaBieHns N pagnoanekTpoHukn» (634050, Poccusi, Tomck, np. JleHuHa, 4. 40). E-mail:
tverdohlebov.a.923-®@e.tusur.ru. https://orcid.org/0009-0008-2250-6375

KapTtawoB Anekceli AHppeeBuUY, VHXEHEP CTYOEHYECKOro KOHCTPYKTOPCKOro 6opo «MHTennektyasnbHble
pagmMoTexHuyeckme cuctembl», kadeapa pagmoTexHudeckmux cuctem, @FAQY BO «ToMcCKuid rocynapCTBEHHbIN
YHUBEPCUTET CUCTEM YMpPaBieHUs 1 pPaamoanekTpoHuku» (634050, Poccusa, Tomck, np. JleHunna, g. 40). E-mail:
kartashov.a.923-m®e.tusur.ru. https://orcid.org/0009-0009-6005-7539

BeGep Bnapucnae UropeBud, acnvpaHT, acCUCTEHT kadenpbl paguoTexHudeckux cuctem, OrAQY BO
«TOMCKNI rocyaapCTBEHHbIM YHUBEPCUTET CUCTEM YMpPaBIEHUS U pPaamnoanekTpoHukm» (634050, Poccusi, ToMck,
np. JleHuHa, . 40). E-mail: vladweber00@gmail.com. SPIN-koa PUHL, 3880-2107, https://orcid.org/0000-0002-
0275-4127

Kynpuu Bnagumup lOpbeBudy, K.T.H., LOLEHT, PyKOBOAUTESb CTYAEHYECKOro KOHCTPYKTOPCKOro 6topo «NHTen-
JleKTyasibHble PaanoTEXHUYECKME CUCTeMbI», kadeapa pagnotexHmdecknx cuctem, Graoy BO «Tomckuin rocypap-
CTBEHHbI YHMBEPCUTET CUCTEM YNpaBfieHUs U PagnoanekTpoHukn» (634050, Poccusa, Tomck, np. JleHnHa, a. 40).
E-mail: vladimir.y.kuprits@tusur.ru. SPIN-kog PVUHL], 4855-3318, https://orcid.org/0000-0001-7190-3213

Translated from Russian into English by K. Nazarov
Edited for English language and spelling by Thomas A. Beavitt

Russian Technological Journal. 2025;13(4):25-36
36


mailto:alenacergeevna2@icloud.com
https://orcid.org/0009-0001-5568-8290
mailto:tverdohlebov.a.923-@e.tusur.ru
https://orcid.org/0009-0008-2250-6375
mailto:kartashov.a.923-m@e.tusur.ru
https://orcid.org/0009-0009-6005-7539
mailto:vladweber00@gmail.com
https://orcid.org/0000-0002-0275-4127
https://orcid.org/0000-0002-0275-4127
mailto:vladimir.y.kuprits@tusur.ru
https://orcid.org/0000-0001-7190-3213

