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Abstract
Objectives. The development of  contemporary models for the conversion of  accents in  foreign languages 
utilizes deep neural network architectures, as  well as  ensembles of  neural networks for speech recognition and 
generation. However, restricted access to  implementations of  such models limits their application, study, and 
further development. Moreover, the use of these models is  limited by their architectural features, which prevents 
flexible changes from being carried out in  the timbre of  the generated speech and requires the accumulation 
of context, leading to increased delays in generation, making these systems unsuitable for use in real-time multi-
user communication scenarios. Therefore, the relevant task and aim of this work is the development of a method that 
generates native-sounding speech based on input accented speech material with minimal delays and the capability 
to preserve, clone, and modify the timbre of the speaker’s voice.
Methods. Methods for modifying, training, and combining deep neural networks into a single end-to-end architecture 
for direct speech-to-speech conversion are applied. For training, original and modified open-source datasets were used.
Results. The work resulted in the development of a real-time accent conversion method with voice cloning based 
on a non-autoregressive neural network. The model comprises modules for accent and gender detection, speaker 
identification, speech conversion, spectrogram generation, and decoding the resulting spectrogram into an audio 
signal. As  well as  demonstrating high accent conversion quality while maintaining the original timbre, the short 
generation times of the applied method make it acceptable for use in real-time scenarios.
Conclusions. Testing of the developed method confirmed the effectiveness of the proposed non-autoregressive 
neural network architecture. The developed model demonstrated the ability to work in real-time information systems 
in English.
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Резюме 
Цели. В настоящее время при разработке моделей для преобразования речи с акцентом в речь без акцен-
та используются архитектуры глубоких нейросетей, а также ансамбли предобученных нейросетей для рас-
познавания и генерации речи. При этом доступ к реализациям таких моделей является ограниченным, что 
затрудняет их применение, изучение и дальнейшее развитие. Также использование данных моделей огра-
ничено особенностями архитектуры, которая не позволяет гибко менять тембр генерируемой речи и требует 
накопления контекста, что ведет к  увеличению задержки при генерации и  делает данные системы непри-
годными для использования в сценариях коммуникации двух и более людей в реальном времени. В связи 
с этим актуальной задачей и целью настоящей работы является разработка метода, позволяющего на осно-
ве входной речи с акцентом генерировать речь без акцента с минимальными задержками с возможностью 
сохранения, клонирования и модификации тембра говорящего, что позволит преодолеть ограничения теку-
щих моделей.
Методы. Применены методы модификации, обучения и объединения глубоких нейросетей в единую сквоз-
ную архитектуру для прямого преобразования речи в речь. Для обучения использованы оригинальные и мо-
дифицированные наборы данных из открытых источников.
Результаты. Разработан метод конвертации акцента с клонированием голоса в реальном времени на осно-
ве неавторегрессионной нейросетевой модели, которая состоит из модулей определения акцента и пола, 
идентификации говорящего, преобразования речи в фонетическое представление, генерации спектрограм-
мы и  декодирования полученной спектрограммы в  аудиосигнал. Метод демонстрирует высокое качество 
конвертации акцента с сохранением оригинального тембра, а также низкие задержки при генерации, прием-
лемые для использования в сценариях реального времени.
Выводы. Апробация разработанного метода подтвердила эффективность предложенной неавторегресси-
онной нейросетевой архитектуры. Разработанная прикладная нейросетевая модель продемонстрировала 
возможность работы в информационных системах на английском языке в режиме реального времени.

Ключевые слова: конвертация акцента, генерация речи, распознавание речи, конвертация голоса, машин-
ное обучение, нейронная сеть
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INTRODUCTION

One of the most important channels of interaction 
between businesses and their customers is communication 
through voice communication. This is evidenced by the 
development and widespread use of call centers, which 
can now be established to operate on a cross-national and 
cross-regional basis. In such cases, English is very often 
used to overcome the interlingual barrier despite the 
operators and clients of call centers not all being native 
speakers of this language. As a  result, situations may 
arise when a customer abandons a communication due to 
the difficulty of mutual understanding with the operator, 
which leads to economic losses. With the development 
of artificial intelligence systems, accent conversion 
software systems have been used to solve this problem, 
which enable to reduce the speaker’s accent to a certain 
extent [1]. Such systems can also be used in the process 
of teaching foreign languages  [2,  3], re-recording and 
enhancing the quality of previously recorded speech [4], 
and improving the quality of existing speech recognition 
systems [5]. Despite the considerable developments that 
have recently taken place in this area of research, the 
problem of improving and enhancing the quality of such 
systems remains relevant.

Accents in speech, representing an integral feature 
of pronunciation, can be divided into native accents, 
which depend on many regional and cultural factors, 
and foreign accents [6]. At the same time, foreign accent 
differs from native accent at the segmental (phonemes) 
and suprasegmental (intonation, accents, rhythmics) 
levels  [7]. A  foreign accent manifests itself when 
a native speaker of one language (L1 speech) speaks in 
another non-native or second language (L2 speech) [8]. 
L2  speech can be less intelligible to native speakers 
than L1  speech based on similar content  [9], resulting 
in reduced comprehension of and trust in what is said, 
negative attitudes towards the speaker, and other forms 
of discrimination by native speakers [10–12].

Early methods for accent conversion in the 
generation phase are based on reference L1  examples 
corresponding to L2  speech  [13–16]. For each 
L2 phrase, a corresponding L1 phrase is required. The 
practical application of such models is limited due to 
insufficient data to cover all possible speech variations. 
Such approaches also require significant resources for 
data collection and processing, which increases the 
development time and cost of such systems. In addition, 
the strict adherence to pairwise examples may reduce the 
versatility and scalability of the technology by limiting 
its ability to adapt to new accents or speech styles that 
were not included in the original dataset.

In subsequent developments, this limitation was 
overcome, meaning that reference examples are not 
required at the inference stage [17–22]. However, parallel 

datasets containing similar L2 and L1 phrases are still used 
for model training  [17,  20], necessitating difficult and 
expensive operations for obtaining a sufficient amount of 
such data. Moreover, the autoregressive recurrent neural 
networks used by the described methods complicates 
the process of training them. Another method [19] uses 
pretrained neural networks to convert text to speech. 
To preserve individual voice characteristics, a separate 
model would need to be trained for each target speaker, 
making multi-user use difficult. Methods [21, 22] based 
on predicting the duration of each generated phoneme, 
which transforms the original  L2  speech duration and 
speaker identity, require the accumulation of context, 
increasing generation time and complicating real-time 
use. Although the method described in [18] is not subject 
to the disadvantages listed above, the implementation 
of the model is limited to a finite set of accents, whose 
identifiers have to be determined during the model 
training phase. This complicates the process of training 
the data and applying the model with accents that have 
not been previously represented in it.

The present work set out to develop an accent 
conversion method that overcomes the above problems 
and shortcomings, capable of converting any speech 
from  L2  to  L1  without using reference examples or 
parallel data in the training and generation stages, which 
greatly simplifies, cheapens and speeds up the process of 
adapting the system to new accents.

1. RESEARCH OBJECTIVES

Speakers perceive literacy and fluency, on the one 
hand, and accent, on the other hand, as separate entities; 
improvement of one of them leads to an enhanced overall 
perception of L2  speech by native speakers  [9,  23]. 
At the same time, absolutely accurate reproduction of 
L1 speech by a non-native speaker is difficult to achieve 
in practice due to differences in phonetic interference 
and speech perception by native speakers  [24]. When 
solving the task of accent conversion, it is important 
to preserve the speaker’s individual vocal features 
(timbre, pitch, loudness), i.e., it is necessary to perform 
voice cloning  [25] while modifying segmental and 
suprasegmental characteristics associated with the 
foreign accent and pronunciation  [13,  17,  18]. This is 
especially important in situations where it is necessary 
to preserve the emotional coloring, expressiveness, and 
individual features of speech, including voice features 
related to the speaker’s gender.

In order to fulfill these conditions, it is necessary to use 
several interconnected, end-to-end architecture models 
for accent and gender detection, speaker embedding (SE), 
speech-to-phonetic  (STP) representation, and 
spectrogram generation, as well as the decoding of the 
resulting spectrogram into an audio signal.
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In addition, in real-time scenarios, such as human 
voice communication using high-speed communication 
channels, it is necessary to ensure minimal delays 
in the generation and transmission of processed 
speech [26–28]. Accent translation should be performed 
in real-time without the use of recurrent networks [29] 
to avoid the error accumulation effect associated with 
sequential output generation.

The training phase is based on publicly available 
open data for training the speech recognition and 
generation systems. In addition, the method set out to be 
independent of the availability of benchmark examples 
and parallel data at the training and inference stages.

2. RESEARCH METHODS

2.1. Architecture of the developed system

The developed accent conversion method includes 
several interrelated models integrated into a  single 
end-to-end architecture for accent and gender detection, 
SE, STP  conversion, spectrogram generation, and 
decoding of the obtained spectrogram into an audio 
signal. Figure 1 shows the general scheme of interaction 
of the above models at the output stage (generation of 
output L1 audio).

AE/GE

Accent

Embedding

 

Gender

Embedding

 

SE

STP

STS

Vocoder

L2

speech

L1

speech

Fig. 1. General derivation scheme of the accent 
conversion method with voice cloning

The L2  speech audio signal is fed to the input of 
the STP model, to the input of the Accent and Gender 
Embedding  (AE/GE) model, and to the input of the 
SE model. The accent embedding affects the generation 
of the phonetic representation, which in vectorized form 
is fed to the input of the speech-to-speech  (STS) and 
mel spectrogram generation model. The AE/GE vector 
representations (embeddings) are also fed to the input of 
the STP model, as well as the output of the SE model, 
which is a  vector representation of individual voice 

characteristics  (timbre). The resulting spectrogram 
is converted into an L1  speech audio signal using 
a decoding vocoder model.

The overall pipeline of L1 speech generation from 
the original L2 speech can be simplistically represented 
as a formula:

aL1 = FV(FSTS(FSTP(aL2, FAE(aL2)),  
	 FAE(aL2), FGE(aL2), FSE(aL2))),� (1)

where aL1 is the generated L1 speech audio signal; aL2 is 
the input L2  speech audio signal; FV is the vocoder 
model; FSTS is the STS model; FSTP is the STP model;  
FAE is AE in the AE/GE  model; FGE is GE in the 
AE/GE model; FSE is the SE model, vector representation 
of individual voice characteristics.

In order to obtain a  single end-to-end model of 
accent conversion, it is necessary to perform the training 
process of each model sequentially. Thus, the AE/GE 
and SE models are independent of other models and their 
training can be performed in any order. The output of 
the trained AE/GE model will be required at the stage of 
obtaining the STP model. All previous models (AE/GE,  
SE, STP) are required to derive the STS  model. The 
training of the vocoder model is based on the output of 
the STS model.

2.2. AE/GE model

In order to obtain fixed length vectors representing 
the accent and gender features of the speaker, the 
model is first trained for the classification task. In such 
a configuration, class labels used in the training process 
are returned by the model at the output of the last layer, 
while vector representations used as voice features are 
taken from a special intermediate layer.

This and other models use a  preprocessor 
based on fast Fourier transform, which converts 
the incoming audio signal  (time  domain) into a  mel 
spectrogram (frequency domain), showing the frequency 
content of the audio signal on a  perceptual mel scale, 
which approximates the nonlinear frequency response of 
the human ear. Here, the sampling frequency (sampling 
rate) is 22050 Hz and the window width is 1024 sound 
fragments (samples), while the window step is 256 samples 
and the number of generated mel bands is 80.

Figure 2  shows the training scheme of the accent 
and gender detection model. It contains blocks of 
convolutional network of Jasper architecture of 
3 × 3 configuration [30]. The accent decoder and gender 
decoder, which have a  common architecture, consist 
of an attention pooling layer  [31], a  normalization 
layer, a  convolutional layer to obtain AE and GE of 
dimension 192, and a linear layer to obtain (predict) the 
accent class (AC) and gender class (GC).
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Preprocessor

Jasper

blocks

Accent

decoder

Gender

decoder

AE AC

GE GC

Speech

CE
Loss

CE
Loss

Fig. 2. Training diagram of the AE/GE model.  
CE are cross entropies

After feeding the audio signal to the preprocessor, 
the mel spectrogram is fed to the Jasper blocks, as well 
as, in parallel, to the accent decoder and the gender 
decoder, along with the corresponding fully connected 
layers in the output to obtain the accent and gender 
prediction vectors. During the model training process, 
the sum of CEs is minimized:

AE,GE a a g g

ga
a g

1 1
a g

1 1

( , , , )

expexp
ln ln ,

exp exp

ji
i j

k l

A G

A G
i j

k l

L x y x y

xx
y y

x x= =

= =

= =

   
   
   = − −   
   
   
   

∑ ∑
∑ ∑

�(2)

where LAE, GE is the overall loss function of the AE/GE 
model; A  is the number of ACs  (40); G  is the number 
of GCs  (2); xa are accent predictions; xg are gender 
predictions; ya are ground truth accent labels; yg are 
ground truth gender labels.

2.3. SE model

Figure 3 shows the training scheme of the SE model 
and tone vector representation. This scheme contains 
an input convolutional neural network of SincNet 
architecture [32], layers of X-Vector DNN1 model [33], 
and a  layer for obtaining vector representations of 
dimensionality 512.
Speech

SincNet
X-Vectors

DNN
VE

AM-Softmax

Loss

Fig. 3. Diagram of the SE model training. VE is the voice 
embedding—vector representation of the speaker’s 

individual voice characteristics

Unlike the AE/GE model, the audio signal is not 
pretransformed into a mel spectrogram, i.e., the digitized 
audio signal in the time domain with a sampling rate of 
16000 Hz is fed to the band-pass filters of the SincNet 
architecture, then to the convolution layers of the 
X-Vector DNN and the output fully connected layer, 
which provides a  vector representation of individual 

1   Deep neural network.

voice characteristics (timbre) at the output. In the 
process of model training, the problem of representation 
learning is solved while minimizing the Additive 
Angular Margin (AAM Loss) function [34].

2.4. STP conversion model

The next step is speech recognition taking into 
account the speaker’s accent. For this purpose, it is 
necessary to obtain a model for converting speech into 
phonetic or textual representation. The training scheme 
of the STP  model is shown in Fig.  4. The dotted line 
represents the blocks that are fixed (frozen) during 
the backpropagation process, i.e., the weights in these 
blocks are not updated, but their previously obtained 
states are used.

Preprocessor

Speech

Conformer

Encoder

Decoder

AE/GE

Accent

Encoder, FFT

+

Subsampler

CTC Loss

AE

Fig. 4. Diagram of STP model training

The speech audio signal is fed to the input of 
the preprocessor as previously described and then 
in parallel to the AE/GE  model to obtain the AE 
and to the convolutional dimensionality reduction 
block (Subsampler) with a factor of 4. Further conversion 
is carried out using the Conformer encoder, which 
comprises a  12  module Conformer architecture  [35] 
having an internal dimensionality of 512 consisting of 
fully connected  [36], convolutional  [37], and attention 
mechanism transformer layers  [38]. AE is then 
normalized, reduced to dimensionality  512, summed 
with the output of the Conformer encoder, and fed to 
the input of the accent encoder, which has a single stack 
feed-forward transformer  (FFT) architecture  [39]. The 
output of the accent encoder is further utilized in the 
STS model as a distribution of phonetic tokens. Finally, 
the output signal of the accent encoder is fed to the decoder, 
which has a single-layer convolutional architecture with 
Softmax activation function, and forms at the output 
a  vector of predictions of textual tokens of dimension 
equal to the size of the tokenizer dictionary (128) plus 
one (for a  blank token). During model training, the 
Connectionist Temporal Classification  (CTC) Loss 
function  [40] is minimized, which calculates the loss 
between the continuous (unsegmented) time series and 
the target sequence:
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where LSTP is the loss function of the 
STP  model  (CTC  Loss); x  is the probabilities of text 
tokens predicted by the model; y is the sequence of text 
tokens from the target text; ρ  is the alignment path 
x  predictions to reduce to y  sequence by removing all 
blank tokens and merging repeated tokens; Ax, y is the set 
of all possible alignment paths; T  is the number of 
predicted tokens in x; 

t
xρ  is the probability of a particular 

predicted token at step t  given the chosen alignment 
path ρ.

2.5. STS conversion  
and spectrogram generation model

The previous models are combined into a  single 
architecture for STS  conversion and spectrogram 
generation. Figure 5 presents a schematic of its training. 
The STS model includes the previously discussed blocks 
of preprocessor, accent, gender  (AE/GE  model) and 
speaker’s timbre  (SE  model) with the corresponding 
modules of vector representations  (AE,  GE,  VE), as 
well as the STP conversion block (STP model). All these 
blocks are marked with a dotted line due to their training 
was performed earlier and is not performed at the stage of 
STP-model training. Moreover, an untrained block based 
on normalized cross correlation function and median 
smoothing was added to the architecture to extract the 
fundamental or lowest frequency of the periodic sound 
signal  (F0), which is perceived by the human ear as 
pitch [41, 42].

Preprocessor

Speech

Upsampler

AE/GE

STP

SE

STP Encoder

Pitch, F0

GE AEVE

Speaker
Encoder

+

Accent
Encoder

+

STS Decoder

+

Mel Loss

Fig. 5. STS Model training diagram

The speech audio signal is fed to the preprocessor, 
pitch block and SE model input. The mel spectrogram 
from the preprocessor is fed to the inputs of the AE/GE 
and STP models. The phonetic representation from the 
STP  model is fed to an upsampler with a  factor of  4 
to equalize the original and generated spectrograms, 
consisting of two convolutional 1D-transposed layers 
and two rectified linear unit (ReLU) activation functions 
placed after each convolutional layer. After the 
upsampler, the phonetic representation is transformed 
using a STP encoder, which has a six-stack feed-forward 
transformer (FFT) architecture [39] used in the Fastpitch 
architecture as an input unit operating in the token 
domain [43], with inner and outer dimensions of 1536 and 
384, respectively. The vector representations of accent, 
gender, speaker’s timbre and pitch profile are normalized 
and reduced to dimensionality  384. Next, the accent 
vectors and the output of the STP encoder are summed 
and fed to the input of the accent encoder (1 stack FFT). 
Similarly, the pitch, timbre, gender vectors are summed 
and fed to the input of the speaker encoder (1 stack FFT). 
Thus, the speaker encoder aggregates speech properties 
related to individual voice characteristics except accent, 
which in turn is the responsibility of the accent encoder. 
The sum of the output vectors of the speaker encoder and 
the accent encoder is fed to the input of a STS decoder 
consisting of 6 stacks of Fastpitch architecture FFTs from 
the output mel area [43]. Finally, the vector is projected 
to dimension  80  to match the original number of mel 
areas. During the training process, the loss function is 
minimized based on the standard deviation:

	 2
STS

1

1

1( , ) ( ) ,
N

i i iN
i

i
i

L x y d y x
d =

=

= −∑
∑

� (4)

where LSTS is the loss function of the STS 
model (Mel Loss); N  is the number of elements in the 
mel spectrogram; x  is the mel spectrogram predicted 
by the model; y  is the target mel spectrogram; d  is the 
mask of the spectrogram duration for collection into 
a batch of fixed size, consisting of values 1 (the element 
should be considered) and 0 (the element should not be 
considered), obtained from the duration of the predicted 
spectrogram.

2.6. Model of sound signal generation  
from mel spectrogram (vocoder)

Mel spectrogram of L1  speech in the frequency 
domain obtained using the STS  model is converted 
into a  sound signal in the time domain. For this 
purpose, a  model based on generative-adversarial 
networks  (HiFi-GAN)  [44] is used. The output audio 
signal has a  sampling rate of 22050 Hz. The model is 



13

Russian Technological Journal. 2025;13(3):7–20

Vladimir A. Nechaev,  
Sergey V. Kosyakov

Accent conversion method with real-time voice cloning  
based on a non-autoregressive neural network model

trained as follows: the audio signal from the training 
dataset is converted into a  mel spectrogram using the 
STS model, then the resulting spectrogram is passed to 
a vocoder and converted into an audio signal. Using the 
received and original audio signals, the loss functions 
for the generator and discriminator are calculated as 
described in [44].

2.7. STS conversion and spectrogram  
generation simplified model (Ablation)

In order to conduct comparative experiments, 
a  simplified version of the accent conversion model 
was also developed, the schematic of which is shown 
in Fig. 6.

Preprocessor

Speech

Upsampler
SE

STP Encoder

Pitch, F0

VE

Speaker
Encoder

+

STS Decoder+

Subsampler

Conformer
Encoder

STP Decoder

Mel
Loss

CTC
Loss

Fig. 6. Schematic of a simplified  
accent conversion model

This simplified model excludes the AE/GE model, as 
well as all related encoders in the STP and STS models. 
Thus, in the resulting simplified model, the output is 
not conditioned on accent and gender properties. In 
addition, the training of the STP model was conducted 
not separately, but simultaneously with the STS model 
without fixing the weights of the STP with minimization 
of the sum of the CTC Loss and Mel Loss functions.

3. PRACTICAL APPLICATION OF THE METHOD

3.1. Model training

AE/GE model was trained on the following datasets: 
CMU-ARCTIC [45], L2 ARCTIC [46], Speech Accent 
Archive  [47], Common Voice 16.1  [48]. All of them 
represent audio recordings of speech in English, their 
corresponding textual transcriptions, and contain 
additional meta-information about accent, gender and, 
in some cases, native language, place of residence and 
age of the speaker. Using this information, the audio files 
were grouped into 40 classes denoting native or foreign 
English accents, e.g., British, American, Russian, 
Indian and South Asian, Canadian, German, Australian, 
African, Japanese, Eastern European, etc. The gender of 

the speaker is also highlighted. The total duration of the 
audio files marked in this way amounted to 1087.6 h for 
the training sample, and 7.6 h for the validation and test 
samples.

VoxCeleb1 [49] and VoxCeleb2 [50] data collections 
with a total duration of 2794 h have been used to train 
the SE  model. These sets represent grouped speech 
audio recordings of 7363 individuals. Audio recordings 
pertaining to one person are presented during training as 
positive examples and, conversely, those pertaining to 
different people as negative examples.

STP model was trained on data from 
CMU-ARCTIC  [45], L2  ARCTIC  [46], Common 
Voice 16.1  [48], LibriSpeech  [51], NPTEL20202, 
VCTK  [52], GigaSpeech  [53]. The mentioned sets 
consist of audio recordings of English speech with 
different accents and corresponding text transcriptions. 
The total duration of the pooled training sample was 
6107  h and the validation sample was 48  h. The text 
transcriptions were normalized, i.e., converted from the 
canonical written form to the spoken form [54], which 
is especially important for numbers and abbreviations, 
and were also brought to a  unified form: lower case 
into ASCII format, punctuation, special characters and 
additional indentation were removed. A SentencePiece 
tokenizer [55] with a dictionary size of 128 was trained 
on the training part of the texts, with which all the texts 
are processed during the training and evaluation of the 
model.

STS model and vocoder were trained using 
the following datasets: CMU-ARCTIC  [45], 
L2  ARCTIC  [46], VCTK  [52], LibriTTS-R  [56], 
LJ  Speech3. When we split the data into training and 
validation samples, their duration was 681 and 17.6 h, 
respectively. Only audio information without textual 
markup is used in the training process.

A simplified model (ablation) was trained on data 
for the STP and STS models.

In order to train, evaluate, and use the described 
models, code has been developed using the open-source 
libraries Pytorch  [57] and NVIDIA  NeMo  [58]. The 
implementation and weights of the vector representation 
model of the speaker’s timbre (SE model) are taken from 
the Pyannote library  [59]. Training was conducted on 
a server with 8 NVIDIA Tesla V100 graphics processing 
units (GPUs).

AE/GE model was trained using the stochastic 
gradient descent optimizer with a learning rate of 1 ∙ 10−3, 
weight  decay  2  ∙  10−4, momentum  0.9, and a  Cosine 

2   NPTEL2020  – Indian English Speech Dataset. https://
github.com/AI4Bharat/NPTEL2020-Indian-English-Speech-
Dataset. Accessed May 01, 2024.

3   Ito K., Johnson L. The LJ Speech Dataset. https://keithito.
com/LJ-Speech-Dataset/. Accessed May 01, 2024.

https://github.com/AI4Bharat/NPTEL2020-Indian-English-Speech-Dataset
https://github.com/AI4Bharat/NPTEL2020-Indian-English-Speech-Dataset
https://github.com/AI4Bharat/NPTEL2020-Indian-English-Speech-Dataset
https://keithito.com/LJ-Speech-Dataset/
https://keithito.com/LJ-Speech-Dataset/
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Annealing scheduler for 200 epochs. To train the STP 
and STS models, the AdamW optimizer was used with 
a  learning rate of  1  ∙  10−3, a  regularization factor of 
0.001, and a similar scheduler as for the AE/GE model 
for 50 epochs for each model. Fine-tuning of the HiFi-
GAN vocoder model was performed by initializing 
model weights obtained from open sources  [44], 
using the AdamW optimizer and a  learning rate of 
1  ∙  10−6  for 40  epochs. The training of the simplified 
model (ablation) was carried out with similar parameters 
used in the STS model.

Table 1  shows the number of trainable parameters 
of the models optimized during training. In total, the 
considered accent conversion architecture  (full  STS), 
consisting of several interconnected models, has 
164 mln parameters.

Table 1. Number of trained parameters

Model Number of parameters, mln

AE/GE 24.9

SE 4.3

STP 82.1

STS 52.7

Full STS 164

Vocoder 84.7

Total 248.7

3.2. Performance assessment

The model performance was assessed on a  Linux 
server running a  single NVIDIA  Tesla  T4  GPU, an 
8-core virtual central processing unit (vCPU), and 16 GB 
of random-access memory  (RAM). To accomplish 
this, the model was first exported to the open source 
ONNX format and then deployed using NVIDIA Triton 
open-source software. Using the program interface 
of the NVIDIA Triton-deployed model and a  5  s test 
audio file containing English L2  speech, we measured 
the response generation latency at 200  iterations. As 
a result, the average latency was 52 ms and throughput 
was 96 RTFX.

Performance assessment results of the accent 
conversion model show low generation delays. Together 
with the features of the architecture, which does not 
require the accumulation of long context but can handle 
segments of less than 0.25  s duration, this makes it 
possible to apply the proposed model in real-time dialog 
when response delays affect communication [26–28].

3.3. Objective quality assessment

Open-source data as well as pretrained speech 
recognition models were used to perform objective 
quality assessment. Using the proposed accent conversion 
method, an audio file was generated for each example 
from the test set. Quality metrics were then calculated for 
the original and corrected audio files. Table 2 presents the 
results of the objective quality assessment.

As test datasets, we used subsamples totaling 
26.9 h that did not participate in the process of training 
the accent conversion model and its components. All 
of them include text transcriptions and audio files of 
English speech with different native and non-native 
accents from open sources:

•	 3.2  h from CMU-ARCTIC  [45], 
L2 ARCTIC [46] (ARCTIC), 10 accents: American, 
English, Chinese, Indian, Korean, Vietnamese, 
Spanish, Arabic, Dutch, German;

•	 3.1  h from Common Voice  [48], 12  accents: 
American, English, Indian, Australian, African, 
Chinese, Filipino, Malaysian, German, Russian, 
French, Eastern European;

•	 15.2 h from NPTEL2020, Indian accent;
•	 5.4 h of Afrispeech-200 [60], African accent (Yoruba, 

Swahili, Igbo, Zulu, Tswana, Idoma, Afrikaans).
Speech recognition models obtained from open 

sources were used: Conformer  [35], Citrinet  [61], and 
Whisper [62]. In this case, the Whisper model is taken in 
two variants: large multilingual  (L.  Mult.) and medium 
English  (M.  En.). Recognition was performed on audio 
files without processing and on audio files after accent 
conversion. The recognized and true transcriptions were 
then reduced to a  single form using normalization  [54], 
after which quality metrics were compared and counted: 
word error rate  (WER), character error rate  (CER). 
In Table 2, the best results for each pair: the test dataset and 
the speech recognition model are highlighted in bold type.

As can be seen from the results, in almost all cases 
the accent conversion method improves the recognition 
of the pretrained models, as indicated by the reduced 
values of word and character error rates. The accent 
conversion model improves speech quality by making it 
more recognizable.

3.4. Subjective quality assessment

Group-based listening tests were conducted 
with 53  participants from different countries with 
an English language proficiency level of at least 
B2  according to the CEFR4  scale. For this purpose, 

4   CEFR (Common European Framework of Reference) is 
the system of foreign language proficiency levels used in Europe. 
https://www.coe.int/en/web/common-european-framework-
reference-languages. Accessed May 01, 2024.

https://www.coe.int/en/web/common-european-framework-reference-languages
https://www.coe.int/en/web/common-european-framework-reference-languages
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each of the participants was given instructions, where 
within each experiment they were asked to listen 
to 1  or 2  audio files and give their assessment of 
compliance with the quality criterion on a five-point 
scale, where ‘1’ – definitely does not comply, ‘2’ – 
rather does not comply, ‘3’ – compromise, ‘4’ – rather 
complies, ‘5’ – exactly complies. The resulting scores 
were then used to calculate the mean opinion score 
(MOS) for each experiment. The results are presented 
in Table 3.

Twenty pairs of audio files from test subsamples 
of L2  ARCTIC  [46] and NPTEL2020  datasets with 
non-native English accent  (Original) were randomly 
selected as audio samples: Indian, Chinese, Korean, 

Vietnamese, Spanish, Arabic, and German. Each 
original audio pair represents a recording of the same 
speaker. For each selected audio file  (40  in  total), 
variants were generated using a  simplified accent 
conversion model  (Ablation) and using the proposed 
model  (Proposed). A  total of 3  experiments were 
conducted to evaluate voice naturalness, speaker 
similarity and absence of foreign accent. In all 
experiments, at least 3 evaluations were asked for each 
type of sound sample. The test samples themselves 
were varied across experiments, eliminating repetition. 
The sample could be listened to an unlimited number 
of times before scoring. Thus, each interviewee made 
a total of 9 to 12 evaluations.

Table 2. Results of accent conversion model assessment with speech recognition models. Data after conversion are 
marked as ‘conv.’

Test dataset
Speech recognition model

Conformer Citrinet Whisper L. Mult. Whisper M. En.

WER, %

ARCTIC 9.57 11.73 16.23 8.91

ARCTIC conv. 8.78 11.55 12.69 8.68

Common Voice 9.07 25.80 36.89 11.26

Common Voice conv. 9.12 23.38 22.71 10.62

NPTEL2020 29.18 29.88 16.41 15.18

NPTEL2020 conv. 25.26 29.41 13.87 11.64

Afrispeech-200 43.2 46.24 37.91 33.61

Afrispeech-200 conv. 35.19 39.49 35.56 29.96

CER, %

ARCTIC 3.73 4.85 10.30 3.98

ARCTIC conv. 3.52 4.68 6.06 3.92

Common Voice 3.75 8.74 21.41 5.66

Common Voice conv. 3.77 8.29 13.63 5.22

NPTEL2020 16.87 17.70 11.94 10.67

NPTEL2020 conv. 14.79 17.01 10.10 9.44

Afrispeech-200 31.52 34.79 24.30 20.04

Afrispeech-200 conv. 27.86 28.92 23.15 18.88
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When assessing the naturalness of the voice, 
participants were asked to determine on a five-point scale 
how natural the speech in the audio example sounds, 
i.e., whether the listener gets the impression that it is 
a real live human voice and not a generated or robotized 
speech. A score of ‘1’ means that the voice is definitely 
artificial, synthesized using computer-generated 
methods, and ‘5’ means that the example sounds like 
speech produced using analog or digital sound recording 
methods of a real human voice. Interviewees were also 
advised not to pay attention to the presence or absence of 
background noise in the recording in order to concentrate 
on speech evaluation.

In order to conduct an experiment on speaker 
similarity evaluation, pairs of audio recordings were 
prepared: Original–Original, Original–Ablation, and 
Original–Proposed. Meanwhile, the first pair includes 
recordings from the original data only, which are 
recordings of the same speaker but uttering different 
phrases. The other pairs include an original recording 
of one phrase and a generated version of another phrase 
by the same speaker. Participants were asked to listen 
to such pairs of audio recordings and decide whether 
they were spoken by the same person, i.e., how similar 
the timbre in one file is to the timbre in the other file. 
Score ‘1’ is the speech in the audio recordings definitely 
belongs to different people, ‘5’ is the timbre of the 
speakers in the audio recordings is identical, belonging 
to one person. Interviewees were recommended to 
ignore the L1  and L2  accent properties during the 
evaluation in order to focus on comparing the overtone 
coloration of the voice.

To assess the absence of a foreign accent, participants 
were asked to listen to an English-language audio file 
and decide how much of a foreign accent they thought 
the recording contained. English and American accents 
were assumed to be native L1 and all other accents were 
assumed to be non-native L2. A score of ‘1’ means that 
the speech has a  pronounced foreign L2  accent, ‘5’ 
means that the speech is definitely an English-speaking 
L1 without a foreign accent.

The analysis of the table shows that the highest 
estimates of voice naturalness and speaker similarity 
show the original examples, which is obvious, since 

they are obtained without using speech synthesis 
methods, and together with the lowest estimate 
of the absence of foreign accent demonstrates 
the calibration of the opinions of the experiment 
participants on real data. Adding the AE/GE model 
to the overall scheme of the accent conversion model 
significantly improves the quality of generation, this 
is demonstrated by the improved results compared 
to the simplified Ablation model. In all subjective 
experiments, the proposed model shows a  score 
higher than ‘4’, meaning that, in the opinion of the 
interviewees, the model rather meets the specified 
quality criteria.

CONCLUSIONS

The study presents an accent conversion method that 
converts any L2 speech with a pronounced foreign accent 
into L1 speech, does not depend on the availability of 
reference examples and parallel data at the training and 
generation stages, which greatly simplifies, cheapens 
and speeds up the process of adapting the system to new 
accents.

The proposed non-autoregressive model, which does 
not use recurrent networks in its architecture, features 
an accelerated training process and real-time accent 
translation while avoiding the error accumulation effect 
associated with sequential output generation.

The described method also includes an algorithm 
for cloning the speech characteristics of the speaker 
to preserve his or her vocal identity even following 
accent conversion. This is especially important in 
situations where emotional coloration, expressiveness, 
and individual speech features are required. In addition, 
the method enables real-time modification of voice 
characteristics such as accent, timbre, and gender-related 
voice features during the generation process by copying 
the corresponding characteristics from an audio sample, 
making it applicable in a wider range of scenarios than 
previous developments.

The model demonstrates high quality accent 
conversion while preserving the original timbre, as well 
as low generation latency acceptable for use in real-time 
scenarios.

Table 3. Results of subjective quality assessment (MOS with 95% confidence interval)

Examples Naturalness of voice Similarity of the speakers Absence of foreign accent

Original 4.83 ± 0.10 4.91 ± 0.08 2.06 ± 0.18

Ablation 3.38 ± 0.13 3.92 ± 0.15 3.58 ± 0.17

Proposed 4.04 ± 0.16 4.30 ± 0.18 4.11 ± 0.14
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