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Abstract

Objectives. The development of contemporary models for the conversion of accents in foreign languages
utilizes deep neural network architectures, as well as ensembles of neural networks for speech recognition and
generation. However, restricted access to implementations of such models limits their application, study, and
further development. Moreover, the use of these models is limited by their architectural features, which prevents
flexible changes from being carried out in the timbre of the generated speech and requires the accumulation
of context, leading to increased delays in generation, making these systems unsuitable for use in real-time multi-
user communication scenarios. Therefore, the relevant task and aim of this work is the development of a method that
generates native-sounding speech based on input accented speech material with minimal delays and the capability
to preserve, clone, and modify the timbre of the speaker’s voice.

Methods. Methods for modifying, training, and combining deep neural networks into a single end-to-end architecture
for direct speech-to-speech conversion are applied. For training, original and modified open-source datasets were used.
Results. The work resulted in the development of a real-time accent conversion method with voice cloning based
on a non-autoregressive neural network. The model comprises modules for accent and gender detection, speaker
identification, speech conversion, spectrogram generation, and decoding the resulting spectrogram into an audio
signal. As well as demonstrating high accent conversion quality while maintaining the original timbre, the short
generation times of the applied method make it acceptable for use in real-time scenarios.

Conclusions. Testing of the developed method confirmed the effectiveness of the proposed non-autoregressive
neural network architecture. The developed model demonstrated the ability to work in real-time information systems
in English.
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B peaJibHOM BPE€MEHH HA OCHOBE HEaBTOPErpeCCUOHHOM
HeHpoceTeBOM MOJEIN
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Pe3iome

Llenu. B HacTosiLee BpeMs nNpu pa3paboTke Moaenel ans npeobpa3oBaHus peyn ¢ akLeHTOM B pedb 6e3 akLeH-
Ta MCMOJIb3YIOTCS apXUTEKTYPbI FyOOKUX HEMpOCceTel, a Takke aHcambnn npenobydyeHHbIX HeMpoceTen ans pac-
No3HaBaHWA 1 reHepaunu pedn. MNpy aToM JOCTYN K peanusaumsam Takmx Moaesnen ABNgeTCs OrpaHUyYeHHbIM, YTO
3aTPyaHAET NX NPUMEHEHNE, N3y4eHne 1 fasnbHelilee passuTtue. Takxke MCNob30BaHue JaHHbIX MOOeNen orpa-
HMYEHO 0COOEHHOCTAMM aPXUTEKTYPbI, KOTOPas He NO3BONSAET N’MOKO MEHATL TEMOP reHepupyemMoin pedun 1 Tpebyet
HaKOMJIEHUS KOHTEKCTa, YTO BeLEeT K YBEIMYEHUIO 3a4ePXKKN NPU reHepauumn n AenaeT AaHHble CUCTEMbI HENpu-
roAHbIMU OJ151 CMOJIb30BaHMS B CLUEHAPMSX KOMMYHMKauUn AByX 1 6osee noaeii B peanbHOM BpeMeHu. B cBssun
C 9TUM aKTyasibHOW 3afia4el 1 Liesbio HacTosiLwel paboThl ABnsieTcs pa3paboTka MeToaa, No3BOJISIIOLLErO HA OCHO-
BE BXO[JHOW peyun C akLeHTOM reHepupoBaThb pedb 6e3 akueHTa C MUHUMaSIbHBIMU 334ePXKaMu C BO3MOXHOCTbIO
COXpaHEeHUs1, KIOHMPOBaHUs 1 Moandukaumm Temobpa roBopsiLLLErO, YTO NO3BOJIUT NPEOCAOSIETb OrPAHNYEHUS TEKY-
WX Mogenen.

MeToabl. [MpyMeHeHbl MeTobl MoaMdUKaLmMm, 00y4eHns 1 0ObeaHEHUS ryOOKMX HEMPOCETEN B €AVHYIO CKBO3-
HYI0 apXUTEKTYPY AJ1s MPSIMOro npeobpa3oBaHvs pedn B peyb. s 06y4eHnss MCnosib30BaHbl OPUrHasIbHbIE U MO-
AndurumMpoBaHHble HABOPbI A@HHbIX U3 OTKPbITLIX UCTOYHMKOB.

PesynbTaTtbl. Pa3paboTaH MeTo KOHBEPTALMM aKLLEHTA C KJIOHMPOBAHWEM roJioca B peasisHOM BPEMEHU HA OCHO-
BE HEaBTOPErpeCCUOHHOM HEMPOCETEBOM MOAENUN, KOTOPas COCTOUT U3 MOAY/EN onpenesieHns akueHTa 1 nona,
naeHTUdUKaLMmM roBopsiLLero, npeobpaszoBaHus peyn B GOHETMYECKOE NpeacTaB/ieHne, reHepaLunm CrekTporpam-
Mbl N OEKOANPOBAHUA MOJIYYEHHOW CNEKTPOrpamMmsl B ayamocurHan. MeTton OeMOHCTPUPYeET BbICOKOE KayeCTBO
KOHBEpTaLUMN akL,EHTa C COXPaHEHMEM OPUTMHANIBHOrO TeEMOPA, a Takke HU3KKe 3a1ePXKKM NPY reHepaumm, npueM-
JieMble )19 UICNOJIb30BaHUS B CLLEHAPUSX PeasibHOro BPEMEHMU.

BbiBoabl. AnpobaLus pa3paboTaHHOro Metoda noareepamnna 3ddeKTMBHOCTb NPeasioKeHHOW HeaBToOperpeccm-
OHHOW HeMpoCeTeBOI apxnTekTypbl. PadpaboTaHHas npuknagHas HelpoceTeBas MoAeslb NPOAEMOHCTPMpoOBana
BO3MOXHOCTb PaboTbl B MHPOPMaALMOHHBLIX CUCTEMAX Ha aHIJIMIACKOM SI3bIKE B PEXVME PeasibHOro BPEMEHN.

KnioueBble crnoBa: KOHBEPTALMS akLEeHTa, reHepaLums peyn, pacrno3HaBaHne peyn, KOHBepTaums roioca, MallmnH-
Hoe oby4yeHune, HelipoHHasi CeTb

Ana umtupoBaHua: Hevaes B.A., Kocsikoe C.B. MeTog, KOHBEPTALMN akLIEHTA C KIIOHMPOBAHMEM rosioca B peasibHOM
BPEMEHM Ha OCHOBE HEaBTOPErPECCMOHHON HerpoceTeBolr moaenn. Russian Technological Journal. 2025;13(3):7-20.
https://doi.org/10.32362/2500-316X-2025-13-3-7-20, https://www.elibrary.ru/PVYBDD

Mpo3spayHocTb hMHAHCOBOW AeATENbHOCTU: ABTOPbI HE UMEIOT PUHAHCOBOM 3aMHTEPECOBAHHOCTM B NPEACTaB/IEH-
HbIX Matepuanax unm MeToaax.

ABTOpPbI 3a9BASIOT 06 OTCYTCTBUM KOHMIMKTA MHTEPECOB.
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INTRODUCTION

One of the most important channels of interaction
between businesses and their customers is communication
through voice communication. This is evidenced by the
development and widespread use of call centers, which
can now be established to operate on a cross-national and
cross-regional basis. In such cases, English is very often
used to overcome the interlingual barrier despite the
operators and clients of call centers not all being native
speakers of this language. As a result, situations may
arise when a customer abandons a communication due to
the difficulty of mutual understanding with the operator,
which leads to economic losses. With the development
of artificial intelligence systems, accent conversion
software systems have been used to solve this problem,
which enable to reduce the speaker’s accent to a certain
extent [1]. Such systems can also be used in the process
of teaching foreign languages [2, 3], re-recording and
enhancing the quality of previously recorded speech [4],
and improving the quality of existing speech recognition
systems [5]. Despite the considerable developments that
have recently taken place in this area of research, the
problem of improving and enhancing the quality of such
systems remains relevant.

Accents in speech, representing an integral feature
of pronunciation, can be divided into native accents,
which depend on many regional and cultural factors,
and foreign accents [6]. At the same time, foreign accent
differs from native accent at the segmental (phonemes)
and suprasegmental (intonation, accents, rhythmics)
levels [7]. A foreign accent manifests itself when
a native speaker of one language (L1 speech) speaks in
another non-native or second language (L2 speech) [8].
L2 speech can be less intelligible to native speakers
than L1 speech based on similar content [9], resulting
in reduced comprehension of and trust in what is said,
negative attitudes towards the speaker, and other forms
of discrimination by native speakers [10—12].

Early methods for accent conversion in the
generation phase are based on reference L1 examples
corresponding to L2 speech [13—-16]. For each
L2 phrase, a corresponding L1 phrase is required. The
practical application of such models is limited due to
insufficient data to cover all possible speech variations.
Such approaches also require significant resources for
data collection and processing, which increases the
development time and cost of such systems. In addition,
the strict adherence to pairwise examples may reduce the
versatility and scalability of the technology by limiting
its ability to adapt to new accents or speech styles that
were not included in the original dataset.

In subsequent developments, this limitation was
overcome, meaning that reference examples are not
required at the inference stage [17-22]. However, parallel

datasets containing similar L2 and L1 phrases are still used
for model training [17, 20], necessitating difficult and
expensive operations for obtaining a sufficient amount of
such data. Moreover, the autoregressive recurrent neural
networks used by the described methods complicates
the process of training them. Another method [19] uses
pretrained neural networks to convert text to speech.
To preserve individual voice characteristics, a separate
model would need to be trained for each target speaker,
making multi-user use difficult. Methods [21, 22] based
on predicting the duration of each generated phoneme,
which transforms the original L2 speech duration and
speaker identity, require the accumulation of context,
increasing generation time and complicating real-time
use. Although the method described in [18] is not subject
to the disadvantages listed above, the implementation
of the model is limited to a finite set of accents, whose
identifiers have to be determined during the model
training phase. This complicates the process of training
the data and applying the model with accents that have
not been previously represented in it.

The present work set out to develop an accent
conversion method that overcomes the above problems
and shortcomings, capable of converting any speech
from L2 to L1 without using reference examples or
parallel data in the training and generation stages, which
greatly simplifies, cheapens and speeds up the process of
adapting the system to new accents.

1. RESEARCH OBJECTIVES

Speakers perceive literacy and fluency, on the one
hand, and accent, on the other hand, as separate entities;
improvement of one of them leads to an enhanced overall
perception of L2 speech by native speakers [9, 23].
At the same time, absolutely accurate reproduction of
L1 speech by a non-native speaker is difficult to achieve
in practice due to differences in phonetic interference
and speech perception by native speakers [24]. When
solving the task of accent conversion, it is important
to preserve the speaker’s individual vocal features
(timbre, pitch, loudness), i.e., it is necessary to perform
voice cloning [25] while modifying segmental and
suprasegmental characteristics associated with the
foreign accent and pronunciation [13, 17, 18]. This is
especially important in situations where it is necessary
to preserve the emotional coloring, expressiveness, and
individual features of speech, including voice features
related to the speaker’s gender.

In order to fulfill these conditions, it is necessary to use
several interconnected, end-to-end architecture models
for accent and gender detection, speaker embedding (SE),
speech-to-phonetic =~ (STP)  representation,  and
spectrogram generation, as well as the decoding of the
resulting spectrogram into an audio signal.
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In addition, in real-time scenarios, such as human
voice communication using high-speed communication
channels, it is necessary to ensure minimal delays
in the generation and transmission of processed
speech [26-28]. Accent translation should be performed
in real-time without the use of recurrent networks [29]
to avoid the error accumulation effect associated with
sequential output generation.

The training phase is based on publicly available
open data for training the speech recognition and
generation systems. In addition, the method set out to be
independent of the availability of benchmark examples
and parallel data at the training and inference stages.

2. RESEARCH METHODS
2.1. Architecture of the developed system

The developed accent conversion method includes
several interrelated models integrated into a single
end-to-end architecture for accent and gender detection,
SE, STP conversion, spectrogram generation, and
decoding of the obtained spectrogram into an audio
signal. Figure 1 shows the general scheme of interaction
of the above models at the output stage (generation of
output L1 audio).

) L2
) 'IIII speech

Y

( AE/GE |
Accent
Embedding
Gender
Embedding

STP

STS

A

Y

A 4

L

Vocoder

L1
speech

Fig. 1. General derivation scheme of the accent
conversion method with voice cloning

The L2 speech audio signal is fed to the input of
the STP model, to the input of the Accent and Gender
Embedding (AE/GE) model, and to the input of the
SE model. The accent embedding affects the generation
of the phonetic representation, which in vectorized form
is fed to the input of the speech-to-speech (STS) and
mel spectrogram generation model. The AE/GE vector
representations (embeddings) are also fed to the input of
the STP model, as well as the output of the SE model,
which is a vector representation of individual voice

characteristics (timbre). The resulting spectrogram
is converted into an L1 speech audio signal using
a decoding vocoder model.

The overall pipeline of L1 speech generation from
the original L2 speech can be simplistically represented
as a formula:

a1 = Fy(Fyrs(Frplap, Fap(ag,))s |
Fyplagy). Foplagy). Fyp(ar ). M

where q; , is the generated L1 speech audio signal; a; , is
the input L2 speech audio signal; Fy, is the vocoder
model; Fgpg is the STS model; Fypp is the STP model;
F,p is AE in the AE/GE model; F; is GE in the
AE/GE model; Fg, is the SE model, vector representation
of individual voice characteristics.

In order to obtain a single end-to-end model of
accent conversion, it is necessary to perform the training
process of each model sequentially. Thus, the AE/GE
and SE models are independent of other models and their
training can be performed in any order. The output of
the trained AE/GE model will be required at the stage of
obtaining the STP model. All previous models (AE/GE,
SE, STP) are required to derive the STS model. The
training of the vocoder model is based on the output of
the STS model.

2.2. AE/GE model

In order to obtain fixed length vectors representing
the accent and gender features of the speaker, the
model is first trained for the classification task. In such
a configuration, class labels used in the training process
are returned by the model at the output of the last layer,
while vector representations used as voice features are
taken from a special intermediate layer.

This and other models use a preprocessor
based on fast Fourier transform, which converts
the incoming audio signal (time domain) into a mel
spectrogram (frequency domain), showing the frequency
content of the audio signal on a perceptual mel scale,
which approximates the nonlinear frequency response of
the human ear. Here, the sampling frequency (sampling
rate) is 22050 Hz and the window width is 1024 sound
fragments (samples), while the window step is 256 samples
and the number of generated mel bands is 80.

Figure 2 shows the training scheme of the accent
and gender detection model. It contains blocks of
convolutional network of Jasper architecture of
3 x 3 configuration [30]. The accent decoder and gender
decoder, which have a common architecture, consist
of an attention pooling layer [31], a normalization
layer, a convolutional layer to obtain AE and GE of
dimension 192, and a linear layer to obtain (predict) the
accent class (AC) and gender class (GC).
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-|-|||||- Speech

Jasper
blocks

Fig. 2. Training diagram of the AE/GE model.
CE are cross entropies

After feeding the audio signal to the preprocessor,
the mel spectrogram is fed to the Jasper blocks, as well
as, in parallel, to the accent decoder and the gender
decoder, along with the corresponding fully connected
layers in the output to obtain the accent and gender
prediction vectors. During the model training process,
the sum of CEs is minimized:

LAE,GE = (xa,ya,xg,yg) =

A exXpx,. G eXp xg ) (2)
==Y Yy In| ——— |-y, In| ———|,
E a; A /Z:_l g; G
Z exp xak Z exp xgl
k=1 =1

where L, g is the overall loss function of the AE/GE
model; 4 is the number of ACs (40); G is the number
of GCs (2); x, are accent predictions; X, are gender
predictions; y, are ground truth accent labels; Y, are
ground truth gender labels.

2.3. SE model

Figure 3 shows the training scheme of the SE model
and tone vector representation. This scheme contains
an input convolutional neural network of SincNet
architecture [32], layers of X-Vector DNN! model [33],
and a layer for obtaining vector representations of
dimensionality 512.

SincNet X-Vectors AM-Softmax
DNN Loss

Fig. 3. Diagram of the SE model training. VE is the voice
embedding—vector representation of the speaker’s
individual voice characteristics

Speech
-|.||I||-

Unlike the AE/GE model, the audio signal is not
pretransformed into a mel spectrogram, i.e., the digitized
audio signal in the time domain with a sampling rate of
16000 Hz is fed to the band-pass filters of the SincNet
architecture, then to the convolution layers of the
X-Vector DNN and the output fully connected layer,
which provides a vector representation of individual

' Deep neural network.

voice characteristics (timbre) at the output. In the
process of model training, the problem of representation
learning is solved while minimizing the Additive
Angular Margin (AAM Loss) function [34].

2.4. STP conversion model

The next step is speech recognition taking into
account the speaker’s accent. For this purpose, it is
necessary to obtain a model for converting speech into
phonetic or textual representation. The training scheme
of the STP model is shown in Fig. 4. The dotted line
represents the blocks that are fixed (frozen) during
the backpropagation process, i.e., the weights in these
blocks are not updated, but their previously obtained
states are used.

-I-l|||l- Speech

........ b

E AE/GE "(—: Preprocessor ' Subsampler
- "i' oo Conformer
A I_A.Fj . Encoder

Accent
‘ Encoder, FFT Decoder }_>CTC Loss

Fig. 4. Diagram of STP model training

The speech audio signal is fed to the input of
the preprocessor as previously described and then
in parallel to the AE/GE model to obtain the AE
and to the convolutional dimensionality reduction
block (Subsampler) with a factor of 4. Further conversion
is carried out using the Conformer encoder, which
comprises a 12 module Conformer architecture [35]
having an internal dimensionality of 512 consisting of
fully connected [36], convolutional [37], and attention
mechanism transformer layers [38]. AE is then
normalized, reduced to dimensionality 512, summed
with the output of the Conformer encoder, and fed to
the input of the accent encoder, which has a single stack
feed-forward transformer (FFT) architecture [39]. The
output of the accent encoder is further utilized in the
STS model as a distribution of phonetic tokens. Finally,
the outputsignal ofthe accentencoderis fed to the decoder,
which has a single-layer convolutional architecture with
Softmax activation function, and forms at the output
a vector of predictions of textual tokens of dimension
equal to the size of the tokenizer dictionary (128) plus
one (for a blank token). During model training, the
Connectionist Temporal Classification (CTC) Loss
function [40] is minimized, which calculates the loss
between the continuous (unsegmented) time series and
the target sequence:
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T
Lgp(ry)==In| > []x, |, A3)

ped, t=1

where  Lgrp is  the loss function of the
STP model (CTC Loss); x is the probabilities of text
tokens predicted by the model; y is the sequence of text
tokens from the target text; p is the alignment path
x predictions to reduce to y sequence by removing all
blank tokens and merging repeated tokens; A, is the set
of all possible alignment paths; 7 is the number of

predicted tokens in x; Xp, is the probability of a particular

predicted token at step ¢ given the chosen alignment
path p.

2.5. STS conversion
and spectrogram generation model

The previous models are combined into a single
architecture for STS conversion and spectrogram
generation. Figure 5 presents a schematic of its training.
The STS model includes the previously discussed blocks
of preprocessor, accent, gender (AE/GE model) and
speaker’s timbre (SE model) with the corresponding
modules of vector representations (AE, GE, VE), as
well as the STP conversion block (STP model). All these
blocks are marked with a dotted line due to their training
was performed earlier and is not performed at the stage of
STP-model training. Moreover, an untrained block based
on normalized cross correlation function and median
smoothing was added to the architecture to extract the
fundamental or lowest frequency of the periodic sound
signal (FO), which is perceived by the human ear as
pitch [41, 42].

________ -

| |||||- Speech

—

—' Pitch, FO Preprocessor \—¢
""""" ﬁ l s
"""" s oaeee | |
l ---------- Hj ------------- Upsampler

L VE | GE | | AE !

Accent
Encoder

STS Decoder

Speaker
Encoder

STP Encoder

Mel Loss

Fig. 5. STS Model training diagram

The speech audio signal is fed to the preprocessor,
pitch block and SE model input. The mel spectrogram
from the preprocessor is fed to the inputs of the AE/GE
and STP models. The phonetic representation from the
STP model is fed to an upsampler with a factor of 4
to equalize the original and generated spectrograms,
consisting of two convolutional 1D-transposed layers
and two rectified linear unit (ReLU) activation functions
placed after each convolutional layer. After the
upsampler, the phonetic representation is transformed
using a STP encoder, which has a six-stack feed-forward
transformer (FFT) architecture [39] used in the Fastpitch
architecture as an input unit operating in the token
domain [43], with inner and outer dimensions of 1536 and
384, respectively. The vector representations of accent,
gender, speaker’s timbre and pitch profile are normalized
and reduced to dimensionality 384. Next, the accent
vectors and the output of the STP encoder are summed
and fed to the input of the accent encoder (1 stack FFT).
Similarly, the pitch, timbre, gender vectors are summed
and fed to the input of the speaker encoder (1 stack FFT).
Thus, the speaker encoder aggregates speech properties
related to individual voice characteristics except accent,
which in turn is the responsibility of the accent encoder.
The sum of the output vectors of the speaker encoder and
the accent encoder is fed to the input of a STS decoder
consisting of 6 stacks of Fastpitch architecture FFTs from
the output mel area [43]. Finally, the vector is projected
to dimension 80 to match the original number of mel
areas. During the training process, the loss function is
minimized based on the standard deviation:

N
L) =——Yd 0 -x 2, @

>4,

i=1

where Lgpg is the loss function of the STS
model (Mel Loss); N is the number of elements in the
mel spectrogram; x is the mel spectrogram predicted
by the model; y is the target mel spectrogram; d is the
mask of the spectrogram duration for collection into
a batch of fixed size, consisting of values 1 (the element
should be considered) and 0 (the element should not be
considered), obtained from the duration of the predicted
spectrogram.

2.6. Model of sound signal generation
from mel spectrogram (vocoder)

Mel spectrogram of L1 speech in the frequency
domain obtained using the STS model is converted
into a sound signal in the time domain. For this
purpose, a model based on generative-adversarial
networks (HiFi-GAN) [44] is used. The output audio
signal has a sampling rate of 22050 Hz. The model is
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trained as follows: the audio signal from the training
dataset is converted into a mel spectrogram using the
STS model, then the resulting spectrogram is passed to
a vocoder and converted into an audio signal. Using the
received and original audio signals, the loss functions
for the generator and discriminator are calculated as
described in [44].

2.7. STS conversion and spectrogram
generation simplified model (Ablation)

In order to conduct comparative experiments,
a simplified version of the accent conversion model
was also developed, the schematic of which is shown
in Fig. 6.

__.|-|||||- Speech

— ¢} Pitch, FO

........ ; X
SE :
_______ i [ Upsampler Cé)lrllcfggr;lrer ]
{VE | !
[STP Encoder] [STP Decoder}—» CTC
Loss

Mel
Loss

STS Decoder

Fig. 6. Schematic of a simplified
accent conversion model

This simplified model excludes the AE/GE model, as
well as all related encoders in the STP and STS models.
Thus, in the resulting simplified model, the output is
not conditioned on accent and gender properties. In
addition, the training of the STP model was conducted
not separately, but simultaneously with the STS model
without fixing the weights of the STP with minimization
of the sum of the CTC Loss and Mel Loss functions.

3. PRACTICAL APPLICATION OF THE METHOD

3.1. Model training

AE/GE model was trained on the following datasets:
CMU-ARCTIC [45], L2 ARCTIC [46], Speech Accent
Archive [47], Common Voice 16.1 [48]. All of them
represent audio recordings of speech in English, their
corresponding textual transcriptions, and contain
additional meta-information about accent, gender and,
in some cases, native language, place of residence and
age of the speaker. Using this information, the audio files
were grouped into 40 classes denoting native or foreign
English accents, e.g., British, American, Russian,
Indian and South Asian, Canadian, German, Australian,
African, Japanese, Eastern European, etc. The gender of

the speaker is also highlighted. The total duration of the
audio files marked in this way amounted to 1087.6 h for
the training sample, and 7.6 h for the validation and test
samples.

VoxCeleb1 [49] and VoxCeleb2 [50] data collections
with a total duration of 2794 h have been used to train
the SE model. These sets represent grouped speech
audio recordings of 7363 individuals. Audio recordings
pertaining to one person are presented during training as
positive examples and, conversely, those pertaining to
different people as negative examples.

STP model was trained on data from
CMU-ARCTIC [45], L2 ARCTIC [46], Common
Voice 16.1 [48], LibriSpeech [51], NPTEL20202,
VCTK [52], GigaSpeech [53]. The mentioned sets
consist of audio recordings of English speech with
different accents and corresponding text transcriptions.
The total duration of the pooled training sample was
6107 h and the validation sample was 48 h. The text
transcriptions were normalized, i.e., converted from the
canonical written form to the spoken form [54], which
is especially important for numbers and abbreviations,
and were also brought to a unified form: lower case
into ASCII format, punctuation, special characters and
additional indentation were removed. A SentencePiece
tokenizer [55] with a dictionary size of 128 was trained
on the training part of the texts, with which all the texts
are processed during the training and evaluation of the
model.

STS model and vocoder were trained using
the following datasets: CMU-ARCTIC [45],
L2 ARCTIC [46], VCTK [52], LibriTTS-R [56],
LJ Speech®. When we split the data into training and
validation samples, their duration was 681 and 17.6 h,
respectively. Only audio information without textual
markup is used in the training process.

A simplified model (ablation) was trained on data
for the STP and STS models.

In order to train, evaluate, and use the described
models, code has been developed using the open-source
libraries Pytorch [57] and NVIDIA NeMo [58]. The
implementation and weights of the vector representation
model of the speaker’s timbre (SE model) are taken from
the Pyannote library [59]. Training was conducted on
a server with 8 NVIDIA Tesla V100 graphics processing
units (GPUs).

AE/GE model was trained using the stochastic
gradient descent optimizer with a learning rate of 1 - 1073,
weight decay 2 - 1074, momentum 0.9, and a Cosine

2 NPTEL2020 — Indian English Speech Dataset. https:/
github.com/AI4Bharat/NPTEL2020-Indian-English-Speech-
Dataset. Accessed May 01, 2024.

3 Ito K., Johnson L. The LJ Speech Dataset. https://keithito.
com/LJ-Speech-Dataset/. Accessed May 01, 2024.
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Annealing scheduler for 200 epochs. To train the STP
and STS models, the AdamW optimizer was used with
a learning rate of 1 - 1073, a regularization factor of
0.001, and a similar scheduler as for the AE/GE model
for 50 epochs for each model. Fine-tuning of the HiFi-
GAN vocoder model was performed by initializing
model weights obtained from open sources [44],
using the AdamW optimizer and a learning rate of
1 - 107® for 40 epochs. The training of the simplified
model (ablation) was carried out with similar parameters
used in the STS model.

Table 1 shows the number of trainable parameters
of the models optimized during training. In total, the
considered accent conversion architecture (full STS),
consisting of several interconnected models, has
164 mln parameters.

Table 1. Number of trained parameters

Model Number of parameters, mln
AE/GE 249
SE 43
STP 82.1
STS 52.7
Full STS 164
Vocoder 84.7
Total 248.7

3.2. Performance assessment

The model performance was assessed on a Linux
server running a single NVIDIA Tesla T4 GPU, an
8-core virtual central processing unit (vCPU), and 16 GB
of random-access memory (RAM). To accomplish
this, the model was first exported to the open source
ONNX format and then deployed using NVIDIA Triton
open-source software. Using the program interface
of the NVIDIA Triton-deployed model and a 5 s test
audio file containing English L2 speech, we measured
the response generation latency at 200 iterations. As
a result, the average latency was 52 ms and throughput
was 96 RTFX.

Performance assessment results of the accent
conversion model show low generation delays. Together
with the features of the architecture, which does not
require the accumulation of long context but can handle
segments of less than 0.25 s duration, this makes it
possible to apply the proposed model in real-time dialog
when response delays affect communication [26-28].

3.3. Objective quality assessment

Open-source data as well as pretrained speech
recognition models were used to perform objective
quality assessment. Using the proposed accent conversion
method, an audio file was generated for each example
from the test set. Quality metrics were then calculated for
the original and corrected audio files. Table 2 presents the
results of the objective quality assessment.

As test datasets, we used subsamples totaling
26.9 h that did not participate in the process of training
the accent conversion model and its components. All
of them include text transcriptions and audio files of
English speech with different native and non-native
accents from open sources:

e 32 h from CMU-ARCTIC [45],
L2 ARCTIC [46] (ARCTIC), 10 accents: American,
English, Chinese, Indian, Korean, Vietnamese,
Spanish, Arabic, Dutch, German;

e 3.1 h from Common Voice [48], 12 accents:
American, English, Indian, Australian, African,
Chinese, Filipino, Malaysian, German, Russian,
French, Eastern European;

e 15.2 h from NPTEL2020, Indian accent;

o 5.4hofAfrispeech-200[60], African accent (Yoruba,
Swahili, Igbo, Zulu, Tswana, I[doma, Afrikaans).
Speech recognition models obtained from open

sources were used: Conformer [35], Citrinet [61], and
Whisper [62]. In this case, the Whisper model is taken in
two variants: large multilingual (L. Mult.) and medium
English (M. En.). Recognition was performed on audio
files without processing and on audio files after accent
conversion. The recognized and true transcriptions were
then reduced to a single form using normalization [54],
after which quality metrics were compared and counted:
word error rate (WER), character error rate (CER).
In Table 2, the best results for each pair: the test dataset and
the speech recognition model are highlighted in bold type.

As can be seen from the results, in almost all cases
the accent conversion method improves the recognition
of the pretrained models, as indicated by the reduced
values of word and character error rates. The accent
conversion model improves speech quality by making it
more recognizable.

3.4. Subjective quality assessment

Group-based listening tests were conducted
with 53 participants from different countries with
an English language proficiency level of at least
B2 according to the CEFR* scale. For this purpose,

4 CEFR (Common European Framework of Reference) is
the system of foreign language proficiency levels used in Europe.
https://www.coe.int/en/web/common-european-framework-
reference-languages. Accessed May 01, 2024.
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Table 2. Results of accent conversion model assessment with speech recognition models. Data after conversion are

marked as ‘conv.’

Speech recognition model
Test dataset
Conformer Citrinet Whisper L. Mult. Whisper M. En.
WER, %
ARCTIC 9.57 11.73 16.23 8.91
ARCTIC conv. 8.78 11.55 12.69 8.68
Common Voice 9.07 25.80 36.89 11.26
Common Voice conv. 9.12 23.38 22.71 10.62
NPTEL2020 29.18 29.88 16.41 15.18
NPTEL2020 conv. 25.26 29.41 13.87 11.64
Afrispeech-200 432 46.24 37.91 33.61
Afrispeech-200 conv. 35.19 39.49 35.56 29.96
CER, %
ARCTIC 3.73 4.85 10.30 3.98
ARCTIC conv. 3.52 4.68 6.06 3.92
Common Voice 3.75 8.74 21.41 5.66
Common Voice conv. 3.77 8.29 13.63 5.22
NPTEL2020 16.87 17.70 11.94 10.67
NPTEL2020 conv. 14.79 17.01 10.10 9.44
Afrispeech-200 31.52 34.79 24.30 20.04
Afrispeech-200 conv. 27.86 28.92 23.15 18.88

each of the participants was given instructions, where
within each experiment they were asked to listen
to 1 or 2 audio files and give their assessment of
compliance with the quality criterion on a five-point
scale, where ‘1’ — definitely does not comply, 2’ —
rather does not comply, ‘3’ — compromise, ‘4’ — rather
complies, ‘5’ — exactly complies. The resulting scores
were then used to calculate the mean opinion score
(MOS) for each experiment. The results are presented
in Table 3.

Twenty pairs of audio files from test subsamples
of L2 ARCTIC [46] and NPTEL2020 datasets with
non-native English accent (Original) were randomly
selected as audio samples: Indian, Chinese, Korean,

Vietnamese, Spanish, Arabic, and German. Each
original audio pair represents a recording of the same
speaker. For each selected audio file (40 in total),
variants were generated using a simplified accent
conversion model (Ablation) and using the proposed
model (Proposed). A total of 3 experiments were
conducted to evaluate voice naturalness, speaker
similarity and absence of foreign accent. In all
experiments, at least 3 evaluations were asked for each
type of sound sample. The test samples themselves
were varied across experiments, eliminating repetition.
The sample could be listened to an unlimited number
of times before scoring. Thus, each interviewee made
a total of 9 to 12 evaluations.
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Table 3. Results of subjective quality assessment (MOS with 95% confidence interval)

Examples Naturalness of voice Similarity of the speakers Absence of foreign accent
Original 4.83+£0.10 491 +0.08 2.06+0.18
Ablation 3.38+0.13 3.92+0.15 3.58+0.17
Proposed 4.04£0.16 4.30+0.18 4.11+0.14

When assessing the naturalness of the wvoice,
participants were asked to determine on a five-point scale
how natural the speech in the audio example sounds,
i.e., whether the listener gets the impression that it is
a real live human voice and not a generated or robotized
speech. A score of ‘1’ means that the voice is definitely
artificial,  synthesized using computer-generated
methods, and ‘5’ means that the example sounds like
speech produced using analog or digital sound recording
methods of a real human voice. Interviewees were also
advised not to pay attention to the presence or absence of
background noise in the recording in order to concentrate
on speech evaluation.

In order to conduct an experiment on speaker
similarity evaluation, pairs of audio recordings were
prepared: Original-Original, Original-Ablation, and
Original-Proposed. Meanwhile, the first pair includes
recordings from the original data only, which are
recordings of the same speaker but uttering different
phrases. The other pairs include an original recording
of one phrase and a generated version of another phrase
by the same speaker. Participants were asked to listen
to such pairs of audio recordings and decide whether
they were spoken by the same person, i.e., how similar
the timbre in one file is to the timbre in the other file.
Score ‘1’ is the speech in the audio recordings definitely
belongs to different people, 5’ is the timbre of the
speakers in the audio recordings is identical, belonging
to one person. Interviewees were recommended to
ignore the L1 and L2 accent properties during the
evaluation in order to focus on comparing the overtone
coloration of the voice.

To assess the absence of a foreign accent, participants
were asked to listen to an English-language audio file
and decide how much of a foreign accent they thought
the recording contained. English and American accents
were assumed to be native L1 and all other accents were
assumed to be non-native L2. A score of ‘1’ means that
the speech has a pronounced foreign L2 accent, ‘5’
means that the speech is definitely an English-speaking
L1 without a foreign accent.

The analysis of the table shows that the highest
estimates of voice naturalness and speaker similarity
show the original examples, which is obvious, since

they are obtained without using speech synthesis
methods, and together with the lowest estimate
of the absence of foreign accent demonstrates
the calibration of the opinions of the experiment
participants on real data. Adding the AE/GE model
to the overall scheme of the accent conversion model
significantly improves the quality of generation, this
is demonstrated by the improved results compared
to the simplified Ablation model. In all subjective
experiments, the proposed model shows a score
higher than ‘4’, meaning that, in the opinion of the
interviewees, the model rather meets the specified
quality criteria.

CONCLUSIONS

The study presents an accent conversion method that
converts any L2 speech with a pronounced foreign accent
into L1 speech, does not depend on the availability of
reference examples and parallel data at the training and
generation stages, which greatly simplifies, cheapens
and speeds up the process of adapting the system to new
accents.

The proposed non-autoregressive model, which does
not use recurrent networks in its architecture, features
an accelerated training process and real-time accent
translation while avoiding the error accumulation effect
associated with sequential output generation.

The described method also includes an algorithm
for cloning the speech characteristics of the speaker
to preserve his or her vocal identity even following
accent conversion. This is especially important in
situations where emotional coloration, expressiveness,
and individual speech features are required. In addition,
the method enables real-time modification of voice
characteristics such as accent, timbre, and gender-related
voice features during the generation process by copying
the corresponding characteristics from an audio sample,
making it applicable in a wider range of scenarios than
previous developments.

The model demonstrates high quality accent
conversion while preserving the original timbre, as well
as low generation latency acceptable for use in real-time
scenarios.
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The method can be used to:
1) convert English-speaking speech with a foreign
L2 accent into L1 speech without a foreign accent;
2) improve speech quality and, as a consequence, to
improve the recognition quality of existing systems;
3) copy and change the speaker’s voice characteristics

The developed applied neural network model
demonstrated the ability to work in real-time English
language information systems. The results of the study
can be applied to the development of voice modification
systems, as well as speech recognition and generation
systems.

4) apply real-time accent conversion in a dialog mode.

10.
11.
12.

13.

14.

15.

16.
17.

18.

19.
20.

21.

in real time; Authors’ contribution
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