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Abstract

Objectives. The problem of restoring defocused and/or linearly blurred images using a Tikhonov-regularized
inverse filter is considered. A common approach to this problem involves solving the Fredholm integral equation of
the first convolution type by means of discretization based on quadrature formulas. The work sets out to obtain an
expression of the point scattering function (PSF) taking into account pixel size finiteness and demonstrate its utility
in application.

Methods. The research is based on signal theory and the method of digital image restoration using Tikhonov
regularization.

Results. Taking into account the finiteness of the pixel size, discrete PSF formulas are obtained both for the case of
a defocused image and for the case of a linearly blurred image at an arbitrary angle. It is shown that, while differences
between the obtained formulas and those traditionally used are not significant under some conditions, under other
conditions they can become significant.

Conclusions. In the case of restoring images at the resolution limit, i.e., when the pixel size cannot be considered
negligibly small compared to the details of the image, the proposed approach can slightly improve the resolution.
In addition, the derived formula for the discrete PSF corresponding to linear blur in an arbitrarily specified direction
can be used to solve the problem without the need for prior image rotation and account for the blur value with sub-
pixel accuracy. This offers an advantage in terms of improving the resolution of extremely fine details in the image,
allowing the obtained formula to be used in solving the adaptive deconvolution problem, where precise adjustment
of PSF parameters is required.
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AUCKPETHON (PYHKIMH PACCEIHUA TOYKH, MOJTy4YaeMOH
C Y4€TOM KOHEYHOCTH pasMepa MUKcess
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MUP3A — Poccumickuni TexHosorn4eckni yamsepceutet, Mocksa, 119454 Poccus
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Pesiome

Llenu. PaccmatpuBaeTcs 3a4a4a BOCCTAHOBIEHNSI PACHOKYCUPOBAHHOMO U/UN IMHENHO CMa3aHHOro 3obpaxe-
HUS C UICMOIb30BaHMEM PErynsapmu3npoBaHHOro no TMXOHOBY MHBEPCHOIo ¢duinbTpa. PacnpocTpaHeHHbIM Noaxoa0M
K PELLEHUIO 3TOM 3a1a4L SIBISIETCS PELUEHVE UHTErpasibHOro ypasHeHus ®pearonbma 1-ro poaa Tmna ceBepTku ny-
TEM ero AMCKpeTn3aumun Ha OCHOBE KBaapaTypHbiX popmyi. Llenb paboTbl — nonyunTh BeipaxeHne GyHKUUKN pacce-
AHUS Toukn (PPT) ¢ y4eTOM KOHEYHOCTU pasmepa NUKCESs U NPOAEMOHCTPUPOBATL €ro NoJIE3HOCTb.

MeToabl. ViccnenoBaHve OCHOBBLIBAETCS HA TEOPUM CUTHANOB M METOAEe BOCCTaHOBNEHUS UMdPOoBbIX M306paxe-
HUI C NCMNOJIb30BAHNEM TUXOHOBCKOW PErynapmnaaumm.

PesynbTatbl. [NonyyeHbl dopmynbl auckpeTHol OPT kak ansa cnyydas pacpoKyCUpPOBAHHOMO, Tak 1 s ciyyas nv-
HENHO CMa3aHHOro Mog, MPOU3BOJIbHBLIM YIIOM 13006paxeHsl, C YHETOM KOHEYHOCTM pasmepa nukcens. Paccmo-
TPEHbI OTNNYUA NOJTYHEHHbBIX GOPMYS OT TPAANLMOHHO NCMNONb3YEMbIX, MOKA3aHO MPU Kakmx YCIOBUAX 3TN OTINYNA
NPakTU4eCKn NcHe3atoT, a NPU Kakmx — MOryT 0KasaTbCs CYLLEeCTBEHHbIMU.

BeiBoAbl. [py BOCCTAHOBNEHMM N306paxXeHWii Ha Npeaesne paspeLuarLlein cnocobHoCT, T.e. Korga pasmepbl Muk-
Cesisi He MOTyT CHMTaTbCS NPEHEBPEXMMO MasibiMV B CPaBHEHMM C AeTaNsiMU N300paxeHuns, npeajiaraeMelii noaxom,
MOXET HECKOJIbKO y/y4llaTh paspelleHne. Kpome Toro, nonyydeHHas dopmyna amckpeTtHoint GPT, cooTBETCTBYIO-
e NMHeHOMy cMagy 1306paxeHurs B MPOM3BOJIbHO 3a4aHHOM Harnpas/ieHUn, NO3BOJIIET HE TOJIbKO PeLlaThb 3a-
navy 6e3 Heob6X0AMMOCTM NpeaBapuTesibHOr0 MNOBOPOTAa N3006paeHNs], HO 1 YYUTbIBATb BEJINYMHY CMa3a C TOYHO-
CTblO [0 AONEN NUKCeNs. ITO faeT NPENMYLLLECTBO B NJ1aHE MOBbLILLEHVS pa3peLleHns NnpeaenbHo MeKNX aetanen
n3006paxeHunst 1 NO3BOJIIET UCMOJIb30BaTh AaHHYI0 GOPMyYIy NpU PeLLeHNN 3a4a4m aaanTUBHOW AEKOHBOJIOLMN,
korga TpebyeTcsa ToYHas noacTpolika napameTtpoB PPT.

KniouyeBblie cnoBa: cma3zaHHoe n306paxeHune, pacdokyCupoBaHHOE N300paxeHne, paspeLlatoLLas CrnocobHOCTb,
KOHEYHbI padmep nukcens, anckpetHas @PT, BOCCTaHOBNEHNE N3006paxeHns, perynspusanms no TUXoHoBY, KO3hdu-
LMEHT perynsipusaumm

e Moctynuna: 14.05.2024 » fopa6oTaHa: 01.07.2024 ¢ MpuHaTa k ony6nukoBaHuio: 30.01.2025

Ansa uutupoBaHusa: Pepopos B.b., Xapnamos C.I"., ®epopos A.B. BoccTaHoBNEHME N300paxeHMin C MCNOIb30BaHNEM
OVCKPETHOM PYHKLMN pacCesHUSA TOYKK, NMOJly4aeMOM C yHEeTOM KOHEYHOCTM padmepa nukcens. Russian Technological
Journal. 2025;13(2):143-154. https://doi.org/10.32362/2500-316X-2025-13-2-143-154, https://elibrary.ru/GXAGAW

MpospayHocTb pMHAHCOBOM AeATENbHOCTU: ABTOPbI HE UMEIOT PUHAHCOBOM 3aMHTEPECOBAHHOCTY B NMPEeACTaB/IEH-
HbIX MaTepuanax nnvu MeToaax.

ABTOpPbI 3a9BNAI0T 06 OTCYTCTBUN KOHDNKTA MHTEPECOB.
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INTRODUCTION

In the contemporary world, the quality of images of
various objects is critical in many fields. These include
medical imaging, astronomy, earth remote sensing from
satellites, security monitoring, and video surveillance.
In order to meet the growing demand for high quality
images, researchers are challenged to improve image
reconstruction and processing techniques. One of the
main challenges involves the recovery of images that
have been distorted by uniform linear motion of the
object or camera, leading to linear blur and defocus.

The present work continues the authors’ earlier
study [1] to explore the issue of restoring a linearly
blurred or defocused image for a case where the blur
parameters are known. So far, this problem has been
the subject of many investigations. For example, the
theory of solving inverse non-correlated problems, which
includes the problem of image restoration, is the subject
of fundamental works [2-5]. The image restoration
problem is also specifically addressed in the fundamental
works [6—10] published in the period leading up to the
early 1990s. The state of the art in this field is described
in [11-15]. However, all the above studies are based on
point spread function (PSF) expressions that assume
that the pixel size is infinitesimally small. By contrast,
the present work derives PSF expressions that take
pixel size finiteness into account, which offers several
advantages. Firstly, considering the finiteness of the pixel
size allows for some improvement in recovery quality
when recovering images captured at the resolution limit
of the camera, where the pixel size cannot be considered
as negligibly small compared to the image details. This
is true for both linearly blurred and defocused image
reconstruction. In addition, the obtained PSF expressions
are continuously dependent on the blur parameters, which
allows easy adjustment of these parameters to the required
values within fractions of a pixel. In particular, the value
and direction of linear blur values can be easily selected.

The study aims to demonstrate the advantages of
the proposed discrete PSF model that accounts for the
finite pixel dimensions. The paper includes a rigorous
mathematical derivation of the specified PSF equations
and their comparison with traditional approaches. The
theoretical results are confirmed by numerical simulation
of the distortions under consideration and their
elimination by deconvolution using the A.N. Tikhonov
regularization.

1. THE 2D DISCRETE PSF WITH A LINEAR BLUR
OF THE IMAGE IN AN ARBITRARY DIRECTION

We consider a rectangular panel of light-sensitive
elements, which is an M x N pixel matrix. The pixels are
assumed to be square-shaped and to fill the entire panel

without gaps; let w be the pixel size. Each pixel is

assignedapairofindices(m,n), m€ 0,M —1; n€ O, N -1,
the pixel in the upper left corner of the panel having
indices (0, 0). We relate this panel to the Cartesian
coordinate system Oxy, with the origin in the upper
left corner of the panel, such that the center of the
pixel with indices (m, n) lies at the point with
coordinates (mw +w/2, nw+w/2). The Ox axis is vertically
down, while the Oy axis is vertically to the right.

Let the function p(x, y) define the luminance field of
the points of the panel generated by the light flux forming
the image at some instant of time 7. The function p(x, )
is logically independent of z. Then the luminance energy
accumulated by the pixel with indices (m, n) for the
exposure time T of the image moving relative to the
panel (focused flux) is equal to

glm,n] =
(m+)w  (n+hw 1
= [ ax [ ayfpCe—vCont y=v, (o
mw nw 0

where (v (x, y), vy(x, y)) are Cartesian components of the
velocity vector of the image point with coordinates (x, ).
So far, we have been considering the general case where
different pixels can have different velocities.

The 2D Kotelnikov interpolation series can be used
to represent the luminance field, as follows:

_ incl X —m lsinel 2 —
p(x,y)—z Zp[m,n]smc[w m]smc(w nj, (1)

meZ nel
where p[m, n] = p(mw, nw).

Substituting this expression into the integral, we
obtain the following:

q[k’l] = z Z hk,[[k_m5l_n]p[msn]a

meZ nel
where
th[ma"] =
p kw, Iw)t v, (kw,lw)t
= wzjsinc(m —u]sinc(n X ar=
0 w w
1
kw,l v (kw,Iw)t
= wztj.sinc(m —Vx(—W)Tthinc{n X T lar
0 w w

Here, it is taken into account that the velocity field
of the image motion within a pixel can be considered
almost constant and equal to its value in the upper left
corner of the pixel; in this case, the multiplier w?t is
considered equal to one.
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Under the assumption that the velocity field is
constant over the entire pixel matrix, the 2D convolution
is the following:

qlk,11= Y > hlm,n)plk —m,I—n], ()

meZ neZ

where the kernel of this convolution is defined by the
following equation:

1

H[m,n] = jsinc(m —ug)sinc(n—u Hdt,  (3)
0
where u, = v/w, u, = v v/w are the displacement

components in pixels for the exposure time.

With u, = u,= 0, we have h[m, n] = sinc(m)sinc(n) =
= §[n]d[m], as it should be.

The examples of the graphs of the discrete kernel
calculated by Eq. (3) are shown in Fig. 1.

In the general case, taking into account the finiteness
of the pixel matrix size, we have a 2D finite convolution:

min(m, K—1) min(n, L-1)

glmnl= Y >

k=0 /=0

Wk, plm—k,n=1], (4)

where meO,M —-1;ne0,N~1 and array p[:, :] is
assumed to be of size M x Nj array A[:, :] is of size K X L;
and array q[:, :] is of size (M + K) X (N + L).

In particular, when u, = 0 (no vertical displacement),

1
H[m,n] = S[m]jsinc(n —u,t)dt,
0

u,=20
u,=5

X

where 6[m] is a discrete delta function, i.e., in the absence
of the vertical velocity component, the 2D convolution
actually reduces to the 1D convolution with the kernel,
as follows:

1
h[n]= j sino(n — u,,)dt.
0

In this case, taking into account the finiteness of the
pixel matrix size, we get

min(k,M 1)

glkl= >,

m=0

h[m]plk —m],

where k€ O,M —1.

If we add the multiplier 1/w? to the right-hand side
of Eq. (3) and then proceed to the limit at w — 0, taking
into account that the kernel does not depend on the
integer indices m, n but on the corresponding continuous
variables x = mw, y = nw, we obtain the equation of the
following form:

1
h(x,y) = j 8(x = v, T)d(y — v, T)dt.
0

Although this equation is used in some literature
on optics (e.g., [16]), it is not suitable for direct
discretization in this form. It can only be discretized
by replacing the delta function it contains by a suitable
regular function; such a replacement by the scaled sinc
function leads back to Eq. (3). However, a slightly
different transformation procedure is also possible to
obtain an expression suitable for discretization:

=S

Fig. 1. Examples of graphs of the 2D discrete kernel of linear blur calculated by Eq. (3)
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h(x,y) = j Ly (OB(x = v, T)3(y = v, Tt)dlt =

where 1(0;1)()/) is the indicator function of the interval (0; 1).
Thus, given that the sinc function, when appropriately
scaled, plays the role of the Dirac delta function in the
space of functions with a finite frequency spectrum, we
obtain

. 1 Ve
h(x,y)= I(O;v T)(y)smc —|x——=y 1|
y w v
y

The scaling factor 1/w appearing in this substitution

is discarded for convenience. Then, assuming again

x = mw and y = nw, we obtain the discrete analogue of
the last equation, as follows:

hm,n]= huy[n]sinc{m—u—xn], 5)
Uy

V. T
where u, =LEN, huy[n] is the function of the
w

integer argument at the extreme values of the argument
n=0, u, equalto 1/2;atn=1,2, ..., u,— 1 equal to 1, and
at all other n equal to 0, that correspond to the quadrature
formula of trapezoids.

It should be noted that the value of the horizontal
blur u, in Eq. (5) is assumed to be a positive integer,
whereas this equation imposes no such restriction on the
value of the vertical component of the blur u ; u, can
take any real value in this equation.

In particular, if we set u . = 0 in (5), then considering
the identity sinc(m) = 8[m], we get h[m, n] = huy [n]8[m].
Since o[m] only differs from zero when m = 0, the
2D kernel h[m, n] is replaced by a 1D kernel, which is
most commonly used in the literature to describe
horizontal linear blur (e.g., [8, 14, 15]).

Equation (5) can be considered as an alternative to
Eq. (3). Like Eq. (3), it allows the recovery of a linearly
blurred image with arbitrary blur direction. However, in
contrast to Eq. (5), Eq. (3) removes the restrictions on
the values of the horizontal blur U, which can be any
real number in Eq. (3), as well as the value of the vertical
component of the blur u . Thus, the use of Eq. (3) offers
a number of advantages. First, considering the real value
of blur within a fraction of a pixel can increase the
resolution of details of the restored image when restoring
an image at the resolution limit, as shown in [1]. Second,
the discreteness of the parameter determining the value
of the horizontal blur can be an obstacle when applying

the discussed image restoration method as a basis for
solving the problem of adaptive deconvolution when the
direction and value of the blur are not precisely known.

2. THE 2D DISCRETE PSF
AT IMAGE DEFOCUSING

For simplicity, we consider a model where the image
is defocused according to the Gaussian law. Although
the Gaussian model is not usually used for high quality
optical systems such as telescopes and microscopes, it
can be used to demonstrate the method for constructing
a discrete PSF taking into account the finiteness of pixel
sizes. In addition, Gaussian defocus is typically used for
demonstration purposes only (e.g., [14]). If required, the
Gaussian function can be replaced by any other function,
e.g., the Airy function, which corresponds to the case
where diffraction is the only cause of defocusing. Here,
there are no fundamental restrictions.

Let the function p(x, y) be the intensity of the light
flux entering the aperture of the lens. Then, due to the
assumed defocus of this flux, the luminance field of
points on the light-sensitive panel is defined by the
convolution integral

2.,.2
+00 400 uz+v

1 Con(ow)?
xX,y)=——— x—u,y—v)e MW dydy,
q(x,y) (o) _{o _{O p(x—u,y=v)

forming the image during the exposure time 1, where
o is the parameter determining the degree of defocus and
w is the pixel size.

Substituting Eq. (1) into this integral, we get the
following:

1

q(x,y)ZT Z Z plm,n] x
2now meZ nel
+00 _ u2
x J. sinc(x “ —mje 262w? x
7

—00
+00 v2
. -V =5
x du _[ smc(y —nje 262w? dy
w

—00

Thus, assuming that x = wi, y = wk, k,l €Z, we
obtain the following:

gk 1) =2% S Y plmnlx

)
NG W™ 11eZ nel

+00 u2
. U\ — 535
X I s1nc[k—m——je 262w? du x
w
—00
+00 v2
. v —T5 5
X Jsmc(l—n——je 26%w? dy.
w
—00
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Going to the limit at w — 0 in the obtained formula,
given that sinc(x/w)/w — 3(x), we arrive at the discrete
convolution of the image p[m, n] with the traditional
kernel representing a Gaussian grid function. In fact,
the discrete convolution kernel traditionally used in this
problem is obtained in the limit, as follows:

2,2

me+n

1

2no

e 202

sy [m.n] =

However, without going to the limit, replacing
u/w and v/w in the last two integrals by u and v,
respectively, gives the following:

q(k,l)—
meZneZ
+00 _i
X j sinc(k—m—u)e 20 du x
—00
+o0 e
x Isinc(l—n—v)e 202 dy.
—00

Thus, similar to linear blur, we have a 2D discrete
convolution of the form (2), whereas in the case of

defocus, the corresponding kernel is separable, as
follows:
hlm, n] = h[m]h,[n], (6
where
+0 _u
hyk]= I sinc(k —u)e 20%du =(sinc * g)(k),
2
g(z)= e 202 , here, the asterisk stands for the

J_c

1D analogue convolution operation.

We consider the convolution f{z) = (sinc * g)(z).
According to the convolution theorem, the Fourier
transform of the function f{z) is the following:

F(v)= 10505 (v)e—21'c2(vc)2 ,

where it is taken into account that the Fourier image of
the function sinc(z) is an indicator function of the
interval (—0.5; 0.5), while the Fourier image of the

2
Gaussian function g(z) is the function —e —2(w)" o

T
verify the latter, recall that the Fourier image of the

e—m(z/M)? /g, e—m(v/1)?

function is the function

(in this case, A = \/ﬂc).

Since h,[k] is the Fourier original of the function F(v)
at the point z = k, we have the following:

0.5
hl[k]: I e—2(nvc)2ei2nvkdv:

-0.5
0.5

0.5

(7
e~2(mo)? cos(2mvk)dv.

The last equation is due to the fact that the imaginary
part of this integral should be zero. This can be verified
directly, since there will be an odd function in the imaginary
part under the integral. In the limit at ¢ — 0, we have
h,[k] = 3[k]. The graphs of the 1D kernel (7) for different
values of the parameter ¢ are shown in Fig. 2. It can be
seen that already at 6 = 1.0 the values of the kernel (7) are
practically indistinguishable from the limit values at w — 0.

3. DECONVOLUTION

We consider Eq. (4), which is a finite 2D linear (in each
dimension) discrete convolution. The equation is solved
using Discrete Fourier Transform (DFT; i.e., 2D DFT).
For this, the linear convolution under consideration should
first be represented as a cyclic convolution as follows:

glm,n] =
M+K-1N+L-1 ( )
> > HkNplm =)y (=D,
k=0 1=0

where (m—k)y, p,(n—10)y,; are modulo M + K
and modulo N + L residuals, respectively,

me0,(M +K —-1),ne0,(N+L-1), and all arrays are
assumed to be of equal size (M + K) x (N + L). This
requires adding M null rows and N null columns to the
array h[:, :], and K null rows and L null columns to the
array pl[:, :] (null rows and columns can be added, for
example, to the number of the last rows and columns).

Then, according to the discrete cyclic convolution
theorem, we get the following:

Q[m, n] = H{m, n]P[m, n], €))

where me0 (M+K D),ne0,(N+L-1); H[:;, :] =
=fit(al:, ), OL:, :1=fit(ql:, :]), P[:, :] = fit(p[:, :]) are the
2D DPFs of the correspondmg arrays.

The problem of reversing the convolution consists
in solving Eq. (8) with respect to the array p[:, :], given
the array ¢[:, :]. This task is known to be ill-conditioned,
i.e., very sensitive to errors in the original data, as
well as to noise. Therefore, it is not possible to use
the Eq. (9) directly for its solution; rather, it is necessary
to use special regularization methods [2—8]. We use the
A.N. Tikhonov regularization method, which considers
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Fig. 2. Examples of 1D kernel graphs (normalized to the maximum) corresponding to the Gaussian defocus;
the dashed line shows the plots of the Gaussian curves giving the kernel limits at w— 0

the reciprocal formula with a regularization term instead
of directly reversing Eq. (9), as follows:

H[m,n]

A = P + oy

Qlm,n], (10)

where o > 0 is the regularization parameter to choose
for maximum restored image quality (¢ = 0 means
no regularization), R[:, :] is an array corresponding
to a chosen regularization function, and s > 0 is the
regularization order. In each case, the regularization
function and order are chosen individually.

For example, the regularizing array R[:, :] can be
calculated as follows:

R[m, n] = R [m] + R,[n], (11)
where
Rl[m]z
2
m
n( ) s me0,(M+K)/2-1,
_ M+ K
RM+K[m—M+K} me(M+K)/ 2—1,(M+K)—1,

Ry[n]=
" 2
n( j R ne0,(N+L1)/2-1,
N+L
RN+L[n—N+L}, ne(N+L)/2-L(N+L)—1

(if one of the numbers here, M + K or N + L, is odd, then
dividing that number by 2 means the integer part of such
a division), or as follows:

R[:, ;] =ft(A[:, 1)), (12)
where A[:, :] is some difference approximation of the
2D Laplace differential operator (expanded to a matrix
of the desired size with zero rows and columns). The
regularization order s is usually chosen low: s =0, 1, 2.

It should be noted that, since we are always restoring
an image of finite size, the so-called “edge effect” is
inevitable. This is due to the fact that the real image to be
restored does not have edges with smoothly decreasing
brightness, which are always obtained when modeling
a blurred or defocused image (when blurring an image
of finite size). Therefore, when modeling such an image,
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the smoothly decreasing edges should first be cut off in
order to make the image resemble reality. Additionally,
prior to reconstruction, its edges should be restored or
smoothed in some way. Otherwise, the reconstructed
image may contain strong artefacts in the form of the
so-called Gibbs effect.

4. MODELING RESULTS

The original image used to model the defocused
image, the resulting defocused image and the result of
restoring it using the kernel that considers finite pixel
sizes are shown in Fig. 3. The image with the larger pixel
size is shown in Fig. 4. The results of deconvolution
using two different PSFs are shown in Fig. 5, where the
first does not consider pixel size finiteness (Fig. Sa),
while the second does (Fig. 5b). The Gaussian defocus
parameter is chosen such that there are noticeable
differences between the graphs of the two PSFs.
Comparing the results shown in Fig. 5, it is clear that the
PSF taking into account the finiteness of the pixel size
produces a significantly sharper image.

A similar result is shown in Fig. 6, which shows the
reconstruction of the image linearly blurred in a given
direction (6 pixels horizontally and 2 pixels vertically)
using a kernel that accounts for the finiteness of the
pixel size. A series of reconstructed images of different
images with different errors in the parameters of the
reconstruction kernel that determine the estimated blur
vector is shown in Fig. 7. Here, the error values are
25%, 12.5%, 6%, and 0% of the true blur components.
It can be seen that, firstly, there may exist situations
where error values, even when expressed in fractions of
pixels, can significantly worsen the result of the image
restoration. Secondly, a successive monotonic reduction
of'the error values provides a monotonic improvement in
image quality. This suggests the possibility of optimizing
the parameters of the kernel used to solve the adaptive
deconvolution problem.

Fig. 3. Reference image and its Gaussian
defocus at o = 2 along with the result
of the convolution
with the regularization parameter a = 107
and the regularization order s = 1

Fig. 4. Reference image (double grain size compared to Fig. 3) and its Gaussian defocus at 0 = 0.4
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Fig. 5. Convolution results of the defocused image
from Fig. 4 with regularization parameter a=107°
and regularization order s = 1

Fig. 7. Reconstruction results of the linearly blurred
image from Fig. 6 with successively decreasing error
of blur parameters, regularization parameter a= 1073,
and regularization order s = 1

CONCLUSIONS

The numerical modeling demonstrates the good
performance of the proposed method offering the
following advantages. Firstly, by taking into account the
finiteness of the pixel size—or more precisely, taking into
account the blur parameters within a fraction of a pixel—

Fig. 6. Reference image, its linear blur, and the result the resolution of the image details can be improved
of its restoration with regularization parameter a = 1073 when the pixel size limit is reached. Importantly, this
and regularization order s = 1 is achieved without image interpolation. Secondly, the
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resulting convolution kernel equation for the linear blur
makes it possible to recover the image blurred at any
angle, not only horizontally. This does not require any
prior image rotation to reduce the problem to restoring
the horizontally blurred image. In this case, the blur
values can be quite high, for example several tens of
pixels. Thirdly, since the equation permits the use of blur
parameters that are not necessarily expressed in terms of
the integer number of pixels, a convenient opportunity

arises to use it in solving the adaptive deconvolution
problem, where its continuous dependence on both blur
parameters may be required.
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