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Abstract
Objectives. The work set out to develop a method for estimating the objective function (OF) landscape convexity 
in the extremum neighborhood. The proposed method, which requires no additional OF calculations or complicated 
mathematical processing, relies on the data accumulated during extremum search.
Methods. Landscape convexity is characterized by the index of power approximation of the OF in the vicinity of the 
extremum. The estimation of this index is carried out for pairs of test points taking into account their distances 
to the found extremum and OF values in them. Based on the analysis of estimation errors, the method includes the 
selection of test points by their distances from the found extremum and the selection of pairs of test points by the 
angle between the directions to them from the found extremum. Test functions having different convexities, including 
concave, were used to experimentally validate the method. The particle swarm optimization algorithm was used 
as an extremum search method. The experimental results were presented in the form of statistical characteristics 
and histograms of distributions of the estimation values of the degree of the OF approximation index.
Results. The conductive experiments confirm that the proposed method provides a reliable estimation of power 
index range bounds upon condition of appropriate definition of trial points and trial point pair selection parameters.
Conclusions. The proposed method may be a part of OF landscape analysis. It is necessary to complement it with 
the algorithms for automatic adjustment of trial points and pairs of trial points selection parameters. Additional 
information may be provided by analyzing the dependencies of power index estimations and trial point distances 
from extrema.
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НАУЧНАЯ СТАТЬЯ

Метод оценки выпуклости рельефа 
целевых функций в процессе поиска экстремума 

А.В. Смирнов @

МИРЭА – Российский технологический университет, Москва, 119454 Россия
@ Автор для переписки, e-mail: av_smirnov@mirea.ru

Резюме 
Цели. Целью работы является разработка метода оценки выпуклости рельефа целевой функции (ЦФ) 
в окрестностях экстремума, не требующего выполнения дополнительных расчетов ЦФ и сложной математи-
ческой обработки, а использующего только данные, собираемые в процессе поиска экстремума.
Методы. Выпуклость рельефа характеризуется показателем степени степенной аппроксимации ЦФ 
в окрестностях экстремума. Оценка этого показателя осуществляется по парам пробных точек с учетом 
их расстояний до найденного экстремума и значений ЦФ в них. На основе анализа погрешностей такой оцен-
ки в методе предусмотрены отбор пробных точек по их расстояниям от найденного экстремума и отбор пар 
пробных точек по углу между направлениями на них из найденного экстремума. Для экспериментальной про-
верки метода использовались тестовые функции с различной выпуклостью, как выпуклые, так и вогнутые. 
В качестве метода поиска экстремума применялся алгоритм роя частиц (particle swarm optimization, PSO). 
Результаты экспериментов представлялись в виде статистических характеристик и гистограмм распределе-
ний значений оценки показателя степени степенной аппроксимации ЦФ.
Результаты. Эксперименты показали, что при соответствующем выборе параметров отбора пробных точек 
и их пар метод дает достоверные значения границ диапазона, в который попадают оценки показателя степе-
ни степенной аппроксимации.
Выводы. Предложенный метод может стать частью методики анализа свойств рельефа ЦФ. Для этого необ-
ходимо дополнить его алгоритмами автоматической настройки параметров отбора пробных точек и их пар. 
Повышение информативности метода может быть достигнуто путем анализа распределения оценок показа-
теля степени по расстояниям пробных точек от экстремума и направлениям на них.

Ключевые слова: рельеф целевой функции, выпуклая функция, вогнутая функция, степенная аппроксима-
ция, показатель степени, гистограмма
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INTRODUCTION

One of the most promising directions for the 
development and improvement of methods for 
searching for optimal solutions involves the study of the 
landscape properties of the optimized target objective 
functions (OFs) and a consideration of these properties 
when selecting a search algorithm or/and tuning its 
parameters [1]. This direction is usually referred to as 

exploratory landscape analysis (ELA). ELA methods 
are based on a definition and classification of the OF 
landscape properties and the development of algorithms 
for their quantitative evaluation by processing the results 
of OF calculations at trial points [2–5].

In this paper, we will be interested in the convexity 
characteristics of landscape properties, according to 
which the OF landscape areas can be divided into convex 
and concave ones.
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Let us give the definitions [6, 7]. Function f(x) is 
called convex on the set X if for ( ) [ ]1 2, X and 0,1∀ ∈ ∀λ ∈x x  

( ) [ ]1 2, X and 0,1∀ ∈ ∀λ ∈x x  the following condition is satisfied:

 ( ) ( ) ( ) ( )1 21 ,f f fλ ≤ λ + − λx x x   (1)

where ( )1 21 .λ = λ + − λx x x
Function f(x) is called strictly convex if the inequality 

in condition (1) is satisfied strictly. Function f(x) is called 
concave if the function −f(x) is convex. A strictly concave 
function is defined similarly. The characteristics of 
convexity are important for understanding the properties 
of OFs. In particular, if the function is concave in the 
neighborhood of the minimum point, such a minimum 
will be unstable in the sense that an insignificant shift 
from this point can lead to a significant increase in the 
value of the OF [6, 8].

The set of ELA properties includes convexity 
characteristics. The methodology of their estimation is as 
follows [2, 3]. In the search area, a set of trial points {xi} 
is formed, where the values of OF f(xi) are determined. 
From this set, pairs of points {xj1, xj2} are randomly 
selected, for which the value of f(xjλ) at λ = 0.5 is 
determined, after which the difference Δ of the left 
and right parts of (1) is calculated. Next, the convexity 
probability of the OF is defined as the fraction of pairs 
of points for which Δ < Δconv, where Δconv < 0 is a given 
threshold. Such a property characterizes the OF on 
average over the entire search area, rather than individual 
landscape regions, in particular, the neighborhoods of 
local extrema, which are of most interest. In addition, 
to obtain each value of f(xjλ) it is required to perform 
an additional calculation of OF, which in cases where 
such a calculation is performed by modeling the object, 
as in many optimization problems of the characteristics 
of radio engineering devices [9], may require significant 
time consumption.

In cases where the calculation of the OF gradient is 
performed, the convexity of the OF can be checked at 
each iteration by fulfilling the inequality [7]:

 ( ) ( ) ( )( )T
2 1 2 1 ,f f− ⋅ ∇ − ∇ > εx x x x  (2)

where x1 and x2 are the coordinate vectors of the initial 
and final iteration points; T is the transpose operation; 

( )f∇ x  the OF gradient at x; ε is a small positive number.
Calculation of the gradient requires analytical 

expressions for partial derivatives of the OF on 
coordinates or application of the finite difference 
method. In the latter case, the number of OF calculations 
that require to be performed increases significantly.

The convexity of the OF landscape is also 
characterized by the eigenvalues of the hessian 

2 ( )f∇ x —the matrix of second partial derivatives. The 
function is convex if all eigenvalues of the Hessian are 

nonnegative. The convexity of the landscape is 
characterized by absolute values of the eigenvalues 
along the corresponding directions. In [3], a set of 
properties determined by the statistics of the ratio of the 
maximum and minimum eigenvalues of the hessian is 
introduced. In [10], a measure of the degree of convexity 
in the form of the number of nonnegative eigenvalues is 
proposed. However, the computation of the hessian 
requires a significant number of additional calculations 
of the OF values.

In recent years, the use of so-called surrogate OF 
models for solving optimization problems has attracted 
much attention. While such a model should preserve the 
most important properties of the OF for the extremum 
search algorithm, the calculation of the values of the 
modeling function should require significantly less time 
than determining the value of the OF itself [11, 12]. 
A sufficiently accurate OF model will also correctly 
reproduce the convexity of the landscape. Although this 
approach has excellent prospects, the construction of 
corresponding models is associated with a large number 
of calculations.

The task of this work is to develop a method 
for estimating the convexity of the OF landscape 
during the search for extrema, which does not require 
the calculation of the OF derivatives and additional 
calculations of the OF values beyond those performed 
by the search algorithm itself, as well as does not require 
the construction of the surrogate OF models.

ANALYSIS OF THE METHOD FOR ESTIMATING 
THE CONVEXITY OF THE OF LANDSCAPE

Let us consider the problem of estimating the 
convexity characteristics of the OF landscape f(x) in 
the vicinity ΩX of the local minimum x*, where the 
following condition is satisfied:

 ( ) ( )*
X, .f f> ∀ ∈Ωx x x  (3)

We will search for a degree approximation of the OF 
changes in the vicinity of x* in the form:

 ( )* *ˆ( ) ( ) ,f f f k
α

− ≈ = −x x x x x  (4)

where ||x|| is the Euclidean norm of the vector x. The 
index of degree α is an objective characteristic of the 
convexity of the OF landscape. At α > 1, OF is convex, 
while at α < 1, it is concave. 

However, the index α does not depend on the value 
of OF f(x*) at the point of extremum, because when this 
value changes by the same amount, the values of OF 
at other points will also shift. Therefore, in order to 
simplify the record, we will assume f(x*) = 0 without 
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loss of generality and consider (4) as an approximation 
of the OF itself.

Suppose that the point x* is known, the OF is indeed 
a power function of the form (4), and the values of 
α and k are the same at all points of ΩX. Let there be 
two trial points x1 and x2 and the values of the OF at 
them are f(x1), f(x2) respectively. Then from the system 
of equations

  
( )

( )

*
1 1

*
2 2

,f k

f k

α

α

 = −

 = −

x x x

x x x
  (5)

we find:

 
( )( ) ( )( )

( ) ( )
1 2
* *

1 2

ln ln
.

ln ln

f f−
α =

− − −

x x

x x x x
 (6)

If the above assumptions are not fulfilled, this 
estimate will be approximate. Let us estimate the errors 
arising in this case.

Suppose that the local minimum position x′ 
found in the search process differs from the true 
position x* (Fig. 1):

 * .′ = + ∆x x x  (7)

In this case we have the estimation:

 
( )( ) ( )( )

( ) ( )
1 2

1 2

ln ln
ˆ .

ln ln

f f−
α =

′ ′− − −

x x

x x x x
 (8)

x′
x2

x1

x*

∆x

Fig. 1. Analysis of errors at inaccurate determination 
of the position of the OF minimum

By dividing (8) by (6) and expressing the distances 
from trial points x1, x2 to the true minimum x* through 
the known distances to x′ using the cosine theorem, we 
get:

( ) ( )
( ) ( )

( )
( )

( )
( )

* *
1 2

1 2

2 2
1 1 1

1

2 2
2 2 2

2

ln lnˆ
ln ln

0.5ln 2 cosø

ln

0.5ln 2 cos
.

ln

Kα

− − −α
= = =

α ′ ′− − −

′ ′− + ∆ − − ⋅ ∆ ⋅
= −

′−

′ ′− + ∆ − − ⋅ ∆ ⋅ y
−

′−

x x x x

x x x x

x x x x x x

x x

x x x x x x

x x

 (9)

Here ψ1 and ψ2 are the angles between the vectors 
1( ),′−x x  2( )′−x x  and the vector ∆x, respectively.

The value of Kα, which does not depend on the 
values of OFs in the trial points, is invariant to changes 
in the scale of distance measurements, making it 
a convenient characteristic of the estimation α̂  error. 
We will assume that 1 2′ ′− > −x x x x  and normalize 
all distances to 2 .′−x x  Figure 2 shows the results of 
calculating by (9) the dependencies of the value of Kα on 
the distance ∆x  from the true to the found position of 
the minimum for several combinations of parameters 
given in Table 1. This assumption is based on the fact 
that, as will be seen from the following analysis, the 
angles between the directions to the sample points must 
be sufficiently small to obtain reliable estimates ˆ .α

Table 1. Parameters of examples of calculation of the 
Kα dependence on the distance ||∆x||

Examples ||x1 − x′|| ||x2 − x′|| ψ1 ψ2

Example 1 10 1 90 90

Example 2 10 1 100 80

Example 3 10 1 80 100

Example 4 10 1 30 30

Example 5 10 1 150 150

Example 6 3 1 90 90

Example 7 30 1 90 90

 Example 1
 Example 2

 Example 3
 Example 4

 Example 5
 Example 6

 Example 7

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0

K
α

0.01 0.10 1.00 10.00
||∆x||

Fig. 2. Dependencies of the ratio Kα of the estimate α̂  
to the true value of α on the distance ||∆x|| from the true 

to the found minimum position
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The above results allow us to conclude that the error 
of the index estimation is small in cases when the 
distances to both trial points are significantly larger than 
the distance from the true position to the found position 
of the minimum. More specifically, when the inequality 

20.1 '∆ ≤ −x x x  is satisfied, the deviation of Kα from 
unity does not exceed 0.1, which can be considered 
acceptable for approximate estimation of the convexity 
of the OF landscape.

Next, we consider the estimation α̂  error due to the 
differences in the values of α1 and α2, as well as k1 and 
k2 along the directions from the point of minimum x* to 
the points x1 and x2. From (6) we obtain:

 

( )( ) ( )( )
( ) ( )

( ) ( )
( )

( )
( )

( )

1 2

1 2
* *

1 2

* *
1 1 2 2

* *
1 2

1 2
* *

1 2

* *
1 2

* *
1 2

ln ln
ˆ

ln ln

ln ln

ln ln

ln

ln

ln
,

ln

f f

k k

k k

α α

−
α = =

− − −

   − − −   
   = =

− − −

= α + −
− −

∆α − ⋅ −
−

− −

x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

  (10)

where 1 2 ,
2

α + α
α =  2 1 .

2
α − α

∆α =

Let us take the arithmetic mean of the indices for the 
two sample points α  as the correct estimate of the 
indicator α. From (10), we obtain the ratio for calculating 
the absolute error of this estimation.

 

( )
( )

( )
( )

1 2
* *

1 2

* *
1 2

* *
1 2

ln
ˆ

ln

ln
.

ln

k k
Eα = α − α = −

− −

∆α − ⋅ −
−

− −

x x x x

x x x x

x x x x

 (11)

The first summand shows the contribution to the 
estimation α̂  error of the difference in the k coefficients 
at the two trial points, and the second summand shows 
the contribution of the difference in the α indices.

Figure 3 shows examples of dependencies of the 
error magnitude Eα on the distance of the second trial 
point from the minimum ||x2 − x*||. The parameters 
are the distance of the first trial point from the 
minimum ||x1 − x*||, as well as the ratio k1/k2 and the value 
∆α introduced above, which characterize the differences 
of the parameters of the degree approximation at the two 
points. The values of these parameters for each example 
are given in Table 2.

Table 2. Parameters of examples of calculation of the Eα 
dependence on ||x2 − x*|| values

Examples ||x2 − x*|| k1/k2 ∆α

Example 1 1 2 0

Example 2 1 1 0.2

Example 3 10 1 0.2

Example 4 100 1 0.2

Example 5 10 2 0.2

Example 6 10 0.5 0.2

Example 1 shows the case when the exponent α  
is constant in all directions, but the coefficient k varies. 
The error increases with distance ||x2 − x*|| as the 
denominator of the first summand decreases. In the 
next three examples, only the exponent α changes. 
The dependencies are different for different values 
of ||x1 − x*|| due to the fact that the second summand 
in (11) is not invariant to changes in the scale of distances. 
The absolute value of Eα with increasing ||x2 − x*|| can 
both increase and decrease, or even turn to 0 if the  
equation ||x1 − x*|| ∙ ||x2 − x*|| = 1 is satisfied. In the 
examples presented in rows 5 and 6, both error 
components are present. The direction of change and the 
sign of the total error can be different depending on the 
ratio of parameters.

 Example 1
 Example 2

 Example 3
 Example 4

 Example 5
 Example 6

0.001 0.010 1.000
||x2 – x*||

E α

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

–0.05

–0.10

–0.15

–0.20

Fig. 3. Dependencies of the difference Eα of the degree 
index estimation α̂  and the accepted as true value α  

on the distance of the nearest sample point to the point 
of minimum

Thus, the value of the error Eα is affected by the values 
of the differences between the parameters k and α at the 
two sample points, and these differences in most cases 
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will be less the smaller the angle between the directions 
to the sample points from the point of minimum.

The real OF is approximated by a step function of 
the form (4). In the general case, the approximation will 
have the form of a step series. Let us consider what 
information about the convexity of the landscape can be 
given by the estimation α̂  by two trial points. Let the 
OF be the sum of two degree functions:

 ( ) 1 2* *
1 2 .f k k

α α
= − + −x x x x x   (12)

The relation (8) takes the form:

 
( )

( )

1 2

1 2

* *
1 1 2 1

*
1

* *
1 2 2 2

*
2

ln
ˆ

ln

ln
.

ln

k k

k k

α α

α α

 − + − 
 α = −

−

 − + − 
 −

−

x x x x

x x

x x x x

x x

 (13)

Figure 4 shows examples of dependencies α̂  on the 
distance between the first trial point and the 
extremum ||x1 − x*|| for the combinations of parameters 
given in Table 3.

Table 3. Parameters of examples of calculation of 
dependence α̂  on the values ||x1 − x*||

Examples α1 α2 k1 k2 ||x1 − x*||/||x2 − x*||

Example 1 1 2 0.5 0.5 10

Example 2 1 2 0.2 0.8 10

Example 3 1 2 0.8 0.2 10

Example 4 1 2 0.5 0.5 3

α̂

 Example 1  Example 2  Example 3  Example 4

0 1 2 3 4 5
||x1 – x*||

2.0

1.8

1.6

1.4

1.2

1.0

0.8

Fig. 4. Dependencies of the degree index α̂  estimation 
on the distance ||x1 − x*|| at different combinations 

of parameters in relation (13)

In all the considered examples, the estimation of the 
degree index α̂  changes from a smaller value α1 to 
a larger value α2 as the distances of the reference points 
to the minimum point increase. The rate of this change 
depends on the ratios of the weight coefficients k1, k2 in (12)  
(examples 2 and 3), as well as on the ratio of the distances 
of the two reference points to the minimum 
point (example 4). Similar regularities will occur with 
a larger number of summands of the step series. These 
results should be taken into account when analyzing the 
convexity of the real OFs.

EXPERIMENTAL

The aim of the experiments was to test the possibility 
of obtaining reliable estimates α̂  using the described 
method. The methodology of experiments included 
obtaining sets of trial points in the process of searching 
for the minimum of the OF and subsequent processing 
of the collected data to obtain estimates α̂  at different 
parameters of selection of pairs of trial points. The 
experiments were performed using MATLAB1 programs.

The well-known and widely used particle swarm 
optimization (PSO) algorithm [13], which, as the 
experience of its use shows, allows finding extrema 
of both convex and nonconvex OFs [14], was used 
as a minimum search method. With the help of this 
algorithm we searched for the minimum of test functions 
from the set [15] often used in such studies, as well as 
specially developed test functions. Information about 
the test functions will be given below together with the 
results of experiments. MATLAB function implementing 
the PSO algorithm was modified to return to the program 
calling it a data array containing the coordinates of all 
swarm particles in all iterations and the corresponding 
OF values. Subsequent processing of this data included 
the following steps:

1. Determination of the coordinates of the found 
minimum x′ and the value of the OF at this point 
f(x′).

2. Calculation of distances of all trial points x from the 
found minimum x′ and selection by fulfillment of 
the inequalities min max ,d d′≤ − ≤x x  where 
dmin, dmax are the set thresholds. The value dmin 
affects the estimation α̂  error determined by the 
relation (9). The value dmax determines the size of 
the vicinity x′, within which the estimation α is 
calculated.

3. Calculation of the entropy of the distribution of trial 
points along the orthants of the coordinate system 
centered on the point of the found minimum x′. The 
entropy value is determined by the formula:

1 https://www.mathworks.com/products/matlab.html. 
Accessed February 14, 2025.
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 2
1

log ,
Nort

i i
i

H P P
=

= − ∑  (14)

where Pi is the probability of the point getting into 
the ith orthant; Nort is the number of orthants equal 
to 2ND; ND is the dimensionality of the search 
space. This value gives an estimate of uniformity 
of distribution of trial points in different directions 
from the found minimum.

4. Calculation of the angles φij between the directions 
to the trial points xi, xj included in all possible pairs 
from the previously selected trial points.

5. Selection of pairs of points xi, xj for estimation of 
the parameters of the degree approximation. The 
selection conditions are formulated on the basis of 
the above analysis of errors of the method.

 max 1, ln ,i
ij

j
C

′−
j ≤ j ≥

′−

x x

x x
 (15)

where φmax and C1 are the given parameters, 
and it is assumed that the point xi is farther from 
the found minimum than the point xj. The value 
of C1 determines the minimum of the denominator 
in (11). The value of φmax determines the maximum 
angle between the directions to the points of the pair.

6. Calculation of the entropy of the distribution of the 
selected pairs by orthants, similarly to item 3, which 
gives an estimate of the completeness of information 
about the indicator α in different directions.

7. Calculation of estimates of the degree approximation 
index α̂  for the selected pairs of points according to 
relation (8). Formation of the histogram of the values 
of these estimates. Calculation of statistical 
characteristics of their distribution.
Examples of the results of application of the described 

method are given below. In the cases of isotropic OFs, in 
which the parameters of the power function (4) are the 
same in all directions from the minimum, the proposed 
method finds the values of these parameters with high 
accuracy. Such examples are not considered here, and 
attention is paid to anisotropic OFs, for which it is 
expected that there are errors due to differences in the 
parameters of the power function in different directions. 
For all used OFs, the equation f(x*) = 0 is satisfied, which, 
as explained earlier, does not lead to a loss of generality 
of the results.

The data are divided into two tables. Table 4 
shows the initial parameters of 12 experiments. The 
dimensionality of the search space in all experiments 
is 4. The column “Npoint” gives the total number of trial 
points collected during the search for the minimum. 
The next column gives the distance between the found 
minimum x′ and the true minimum position x*. This 

Table 4. Initial parameters of the experiments

Exp. Function Npoint ||x’ − x*|| dmin dmax φmax C1

1 ellips 1980 7.11 ∙ 10−5 1.00 ∙ 10−8 10 10 2

2 ellips 1980 7.11 ∙ 10−5 0.001 10 10 2

3 ellips 1980 7.11 ∙ 10−5 0.001 10 2 2

4 ellips 1980 7.11 ∙ 10−5 0.001 10 10 6

5 ellips 1980 7.11 ∙ 10−5 0.001 10 2 6

6 diffpowers 1120 1.03 ∙ 10−2 1.00 ∙ 10−8 10 10 2

7 diffpowers 1120 1.03 ∙ 10−2 0.001 10 10 2

8 diffpowers 1120 1.03 ∙ 10−2 0.1 10 10 2

9 diffpowers 1120 1.03 ∙ 10−2 0.1 10 30 2

10 TestLE4 1420 1.20 ∙ 10−3 1.00 ∙ 10−8 10 10 2

11 TestLE4 1420 1.20 ∙ 10−3 0.01 10 10 2

12 TestLE4 1420 1.20 ∙ 10−3 0.1 10 10 2
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value is given for reference and is not used by the 
algorithm since the true position of the minimum is 
assumed to be unknown. The following columns contain 
the values of the parameters by which the sample points 
and their pairs are selected.

Table 5 shows the results of these experiments. Here 
Nsel. point and Hsel. point are the number of points selected 
according to item 2 and the entropy of their distribution 
over orthants, Npair, Hpair are the same parameters for 
pairs of points selected according to item 5. The 
following columns contain the parameters of the 
distribution of the estimations α̂  for the selected pairs: 
minimum (min), mean (mean), median (med), maximum 

(max), standard deviation (std), skewness (skew), and 
kurtosis (kurt). Histograms of the estimation α̂  values 
for the experiments 5, 9, and 12 are shown in Fig. 5.

Let us proceed to analyze the results of the 
experiments.

In experiments 1–5, we studied the function 
ellips(x) [15], formed according to the equation:

 ( ) ( ) ( ) ( )( )2 6 1 / 1*

1
10 ,

ND
n ND

n n
n

f x x − −

=
= − ⋅∑x  (16)

where x = (x1, ..., xND) are the coordinates of the point, 
* * *

1( , ..., )NDx x=x  are the coordinates of the minimum. 

Table 5. Results of experiments

Exp. Nsel.point Hsel.point Npair Hpair min mean med max std skew kurt

1 1978 3.845 202413 3.659 0.0003 1.916 1.926 6.545 0.414 0.590 9.351

2 1698 3.775 148938 3.515 0.0003 1.943 1.951 6.545 0.432 0.702 9.199

3 1698 3.775 41786 3.499 0.052 1.951 1.972 4.517 0.301 −0.045 9.988

4 1698 3.775 33095 3.263 0.929 1.940 1.947 3.523 0.231 0.658 7.901

5 1698 3.775 8982 3.222 1.025 1.953 1.969 2.799 0.142 −0.038 7.830

6 1118 3.766 506 3.367 2.447 4.803 4.769 6.564 0.937 −0.381 2.319

7 1118 3.766 506 3.367 2.447 4.803 4.769 6.564 0.937 −0.381 2.319

8 744 3.668 123 3.305 2.755 4.924 4.941 6.249 0.877 −0.382 2.277

9 744 3.668 3373 3.329 2.015 4.562 4.578 6.287 0.954 −0.222 2.271

10 1419 3.706 2448 3.012 0.568 2.615 2.763 3.561 0.435 −2.237 7.655

11 1196 3.710 1078 3.155 0.568 2.534 2.823 3.033 0.578 −1.482 3.981

12 805 3.654 165 2.707 0.568 1.685 1.494 3.016 0.635 0.467 2.355
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Fig. 5. Histograms of evaluation α̂:  values: (a) experiment 5, (b) experiment 9, (c) experiment 12



129

Russian Technological Journal. 2025;13(2):121–131

Alexander V. SmirnovMethod for estimating objective function landscape convexity  
during extremum search

For this OF, the degree exponent α = 2 in all directions, 
and the coefficient k varies in different directions in the 
range from 1 to 106.

In all experiments with this function, the mean 
and median values of the estimate α̂  are close to the 
correct value of 2. The range of estimates from 
minimum to maximum narrows as the constraints on 
pair selection become stronger, and the standard 
deviation decreases and reaches in experiment 5 
a value of about 7% of the mean value, which can be 
recognized as quite satisfactory. At the same time, the 
shape of the distribution function of estimates turns 
out to be symmetric and with a sharp peak (Fig. 5a). 
The entropy of the distribution of selected points by 
orthants is close to the maximum value of 4. The 
entropy of the distribution of the selected pairs is 
smaller, but from the histogram of this distribution 
(not given here) we can see that in experiments 1–5 all 
orthants are represented, i.e., all directions are taken 
into account in the first approximation. This  
is also true for the other functions considered  
below.

In experiments 6–9, the function diffpowers(x) [15] 
defined by the relation:

 ( ) ( ) ( ) ( )( )2 4 1 / 1*

1
,

ND n ND
n n

n
f x x

+ − −

=
= −∑x  (17)

where the notation is the same as in (16). This function is 
the sum of degree functions from different components 
of the point coordinate vector. Degree exponents vary in 
the range from 2 to 6.

In experiments 6–8, the parameter dmin increases 
successively, and the number of selected pairs of points 
decreases. In experiment 7, this leads to narrowing of the 
range of estimates ˆ ,α  but in experiment 8, the number 
of sampled pairs of points becomes too small, and the 
lower limit of the range is shifted downward. In 
experiment 9, the tolerance φmax on the angle between 
the points of a pair is increased. As a result, the number 
of selected pairs has increased significantly, and the 
boundaries of the range of estimates α̂  (from 2 to 6) are 
defined with acceptable errors. At the same time, the 
histogram of α̂  values for this experiment is significantly 
different from zero in the whole range 
from 2 to 6 (Fig. 5b), which is an indication of the 
difference of the index in the degree approximation in 
different directions.

In the standard set of test functions [15] there is no 
function whose landscape in the region of minimum 
can be made both convex and concave. To obtain 
such properties, several additional test functions were 
developed. Below we present the results of experiments 

with one of them—TestLE4(x) calculated by the 
following relations:
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 (18)

The variables Kij and Wij are elements of 
matrices K and W, which have dimensions 2 × ND, 
and represent the values of coefficients and degree 
exponents, respectively, along the positive and negative 
directions of all coordinates of the search space. The 
resulting values of the degree exponent k and coefficient 
α along the direction to the trial point are obtained by 
interpolation between the values of these quantities 
along the coordinate axes. Thus, the possibility of 
arbitrary setting of the parameters of the degree function 
along different coordinates and smooth changes of these 
parameters along intermediate directions is provided.

In experiments 10–12, the following parameter 
matrices were specified:

3 1.5 0.5 1 1 2 3 5
, .

1.5 2 1 0.7 3 1 0.5 1
   

= =   
   

W K

The function is convex in some directions and 
concave in others, and the rate of change of the function 
is also different in different directions. The range of 
values of the degree exponent is from 0.5 to 3.

In experiments 10–12, the point selection threshold 
dmin was consistently increased. As a result, the number 
of selected points and pairs decreased. At the same time, 
the maximum value of the estimate α̂  decreased 
insignificantly, the minimum value remained unchanged, 
and the value of the distribution excess decreased 
significantly, i.e., the distribution became more uniform. 
The accuracy of estimation of the range α̂  boundaries 
can be considered acceptable. The histogram of 
estimation values is different from zero in the whole 
range from the lower to the upper boundaries.

These examples represent a part of the experimental 
data obtained using different test functions. In addition, 
besides the PSO algorithm, the differential evolution 
algorithm [13] and covariance matrix adaptation 
evolution strategy [16] were used.
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addition to that presented in the above histogram, it is 
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well as the multivariate distribution by distances and 
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The described method of convexity estimation can 
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