Russian Technological Journal. 2025;13(2):121-131 ISSN 2500-316X (Online)

Mathematical modeling

MaremaTnueckoe MOae/JIMpOBaHUE

UDC 004.023, 519.677
https://doi.org/10.32362/2500-316X-2025-13-2-121-131 ORI
EDN EWCRYQ

RESEARCH ARTICLE

Method for estimating objective function landscape
convexity during extremum search

Alexander V. Smirnov @

MIREA - Russian Technological University, Moscow, 119454 Russia
@ Corresponding author, e-mail: av_smirnov@mirea.ru

Abstract

Objectives. The work set out to develop a method for estimating the objective function (OF) landscape convexity
in the extremum neighborhood. The proposed method, which requires no additional OF calculations or complicated
mathematical processing, relies on the data accumulated during extremum search.

Methods. Landscape convexity is characterized by the index of power approximation of the OF in the vicinity of the
extremum. The estimation of this index is carried out for pairs of test points taking into account their distances
to the found extremum and OF values in them. Based on the analysis of estimation errors, the method includes the
selection of test points by their distances from the found extremum and the selection of pairs of test points by the
angle between the directions to them from the found extremum. Test functions having different convexities, including
concave, were used to experimentally validate the method. The particle swarm optimization algorithm was used
as an extremum search method. The experimental results were presented in the form of statistical characteristics
and histograms of distributions of the estimation values of the degree of the OF approximation index.

Results. The conductive experiments confirm that the proposed method provides a reliable estimation of power
index range bounds upon condition of appropriate definition of trial points and trial point pair selection parameters.
Conclusions. The proposed method may be a part of OF landscape analysis. It is necessary to complement it with
the algorithms for automatic adjustment of trial points and pairs of trial points selection parameters. Additional
information may be provided by analyzing the dependencies of power index estimations and trial point distances
from extrema.
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HAYYHAA CTATbA

MeToa oLleHKH BBINYKJIOCTH peiibeda
HeJieBbIX QYHKIUU B MIpoLecce MOUCKa IKCTpeMyMa

A.B. CmupHos ©

MUP3A — Poccuiicknii TexHosIorn4ecknii yumsepceutet, Mocksa, 119454 Poccus

@ AsTOp Ana nepenvcku, e-mail: av_smirnov@mirea.ru

Pesiome

Lenu. Uenbio paboTel siBnseTcs paspaboTka MeToda OUEHKWM BbINykNocTn penbeda uenesont GyHkumm (Lid)
B OKPECTHOCTSIX 9KCTPEMYMA, He TpeOyIoLLLEro BbINMOSIHEHNS AOMNOIHUTENbHbLIX pacyeToB LM 1 cnoxHoi matematu-
yeckom 06paboTku, a MCMONb3YIOLLEro TONbKO AaHHble, cObMpaemMble B MPoLLEcce noncka akcTpeMmyma.

MeTopbl. BbinyknocTb penbeda XxapakTepusyeTcsi nokasaTefieM CTeneHu CTeneHHon annpokcumaumm Lid
B OKPECTHOCTSX akcTpemyma. OueHka 9TOoro nokasaTesiss OCYLLECTBASETCS Mo napam NpPoOHbIX TOYEK C Yy4EeTOM
VX PaCCTOSHUI A0 HalAEHHOro akcTpeMymMa u 3HadeHui Lid B H1x. Ha ocHoBe aHannaa norpeLHoCcTen Tako OLeH-
K1 B MeToAe NpeayCcMOoTPeHbl 0TOOP NPOBHbLIX TOYEK MO UX PACCTOSAHUSM OT HalOEHHOro aKcTpeMymMa 1 oTbop nap
NPOOGHLIX TOYEK MO Yriy MeXAy HanpaBieHUSIMIN Ha HUX U3 HANOEeHHOr 0 3KCTpeMyma. [1ns akcneprMeHTanbHOM Npo-
BEPKM METOAA MCMONb30BaNIMCb TECTOBbIE DYHKLMN C Pa3inNYHON BbIMYKJIOCTbIO, Kak BbiMykKJble, Tak U BOTHYThIE.
B kauecTBe MeToaa nouvcka akcTpeMyma npuMeHsiics anroputMm pos Jactuy, (particle swarm optimization, PSO).
Pe3ynbTaTbl 3KCNEpMMEHTOB NPeacTaBAS/IMChL B BUAE CTATUCTUYECKMX XapakTepuUCTUK U rTMcTorpaMmm pacrnpenene-
HWIA 3HAYEHMIN OLLEHKM MoKasaTesisi CTeneHn cteneHHon annpokcumauum L.

PesynbTaTbl. 9KCNEpMMEHTbI MOKasanau, YTo Npu COOTBETCTBYIOLLEM BbiGope napamMeTpoB 0TOopa NpPobHbIX ToHek
M UX Nap MeTon, AaeT AOCTOBEPHbIEe 3HaYEeHUs FpaHuL, AMana3oHa, B KOTOPbI NonaaaloT OLLEHKN rnokasaTtens ctene-
HW CTEeNeHHON annpoKCUMauunm.

BbiBoAbl. [1peanoxeHHbI MeTo4 MOXET CTaTb HaCTbio METOAVKM aHanm3a cBoCTB penbeda Lid. [Ans atoro Heob-
XOOVMO OOMOJIHUTL €ro anropuTMamMm aBToMaTUYeCckolr HacTPOMKM NnapamMeTpoB 0T6opa NPOBHLIX TOYEK U UX nap.
MoBbleHEe NHPOPMATUBHOCTU METOAa MOXET ObITb AOCTUIHYTO NyTEM aHaNM3a pacnpeaeneHuns OLeHoK nokasa-
Tesns CTeneHn No PaccTOSHMUSAM MPOBOHbLIX TOYEK OT 3KCTPEeMyMa 1 HarnpaBieHUSM Ha HUX.

Kniouesble cnoBa: penbed Leneson GyHKLNK, Bbinyknas GyHKUUS, BOrHyTas GyHKUUSA, CTENEHHasa annpokcuma-

unda, nokasaTtesib cteneHun, rmctorpaMmma

e Moctynuna: 28.05.2024 » Aopa6oTaHa: 26.07.2024 ¢ MpuHaTa k ony6nukoBaHuio: 12.02.2025

Ana yutnpoBaHusa: CmupHos A.B. MeTton oueHKM BbINyKNOCTM penbeda Lenesbix QyHKUMA B MPoLEeCCe noucka
akcTpemyma. Russian Technological Journal. 2025;13(2):121-131. https://doi.org/10.32362/2500-316X-2025-13-2-

121-131, https://elibrary.ru/EWCRYQ

Mpo3payHocTb GUHAHCOBOW AEeATEeNIbHOCTU: ABTOP HE MMeeT GMHAHCOBOWM 3anHTEPECOBAHHOCTM B NPEACTaB/EH-

HbIX MaTepuanax nin Mmetogax.

ABTOp 3asBnseT 06 OTCYTCTBUM KOHPIMKTA UHTEPECOB.

INTRODUCTION

One of the most promising directions for the
development and improvement of methods for
searching for optimal solutions involves the study of the
landscape properties of the optimized target objective
functions (OFs) and a consideration of these properties
when selecting a search algorithm or/and tuning its
parameters [1]. This direction is usually referred to as

exploratory landscape analysis (ELA). ELA methods
are based on a definition and classification of the OF
landscape properties and the development of algorithms
for their quantitative evaluation by processing the results
of OF calculations at trial points [2-5].

In this paper, we will be interested in the convexity
characteristics of landscape properties, according to
which the OF landscape areas can be divided into convex
and concave ones.
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Let us give the definitions [6, 7]. Function f(x) is
called convex on the set X if for V(xl,xz)eXand
Ve [O,l] the following condition is satisfied:

F(x) <M (x)+(1-2) £ (x,), (1)

where X, =Ax; + (1- k)xz.

Function f{(x) is called strictly convex if the inequality
in condition (1) is satisfied strictly. Function f{x) is called
concave if the function —f{x) is convex. A strictly concave
function is defined similarly. The characteristics of
convexity are important for understanding the properties
of OFs. In particular, if the function is concave in the
neighborhood of the minimum point, such a minimum
will be unstable in the sense that an insignificant shift
from this point can lead to a significant increase in the
value of the OF [6, 8].

The set of ELA properties includes convexity
characteristics. The methodology of their estimation is as
follows [2, 3]. In the search area, a set of trial points {x,}
is formed, where the values of OF f(x;) are determined.
From this set, pairs of points {le, xﬂ} are randomly
selected, for which the value of f(xjk) at A = 0.5 is
determined, after which the difference A of the left
and right parts of (1) is calculated. Next, the convexity
probability of the OF is defined as the fraction of pairs
of points for which A<A_ ., where A = <0isa given
threshold. Such a property characterizes the OF on
average over the entire search area, rather than individual
landscape regions, in particular, the neighborhoods of
local extrema, which are of most interest. In addition,
to obtain each value of f{x;) it is required to perform
an additional calculation of OF, which in cases where
such a calculation is performed by modeling the object,
as in many optimization problems of the characteristics
of radio engineering devices [9], may require significant
time consumption.

In cases where the calculation of the OF gradient is
performed, the convexity of the OF can be checked at
each iteration by fulfilling the inequality [7]:

(o —x) (Y (%)-V/(x))>e @

where x, and x, are the coordinate vectors of the initial
and final iteration points; T is the transpose operation;
Vf(x) the OF gradient at x; ¢ is a small positive number.

Calculation of the gradient requires analytical
expressions for partial derivatives of the OF on
coordinates or application of the finite difference
method. In the latter case, the number of OF calculations
that require to be performed increases significantly.

The convexity of the OF landscape is also
characterized by the eigenvalues of the hessian
V2 f(x) —the matrix of second partial derivatives. The
function is convex if all eigenvalues of the Hessian are

nonnegative. The convexity of the landscape is
characterized by absolute values of the eigenvalues
along the corresponding directions. In [3], a set of
properties determined by the statistics of the ratio of the
maximum and minimum eigenvalues of the hessian is
introduced. In [10], a measure of the degree of convexity
in the form of the number of nonnegative eigenvalues is
proposed. However, the computation of the hessian
requires a significant number of additional calculations
of the OF values.

In recent years, the use of so-called surrogate OF
models for solving optimization problems has attracted
much attention. While such a model should preserve the
most important properties of the OF for the extremum
search algorithm, the calculation of the values of the
modeling function should require significantly less time
than determining the value of the OF itself [11, 12].
A sufficiently accurate OF model will also correctly
reproduce the convexity of the landscape. Although this
approach has excellent prospects, the construction of
corresponding models is associated with a large number
of calculations.

The task of this work is to develop a method
for estimating the convexity of the OF landscape
during the search for extrema, which does not require
the calculation of the OF derivatives and additional
calculations of the OF values beyond those performed
by the search algorithm itself, as well as does not require
the construction of the surrogate OF models.

ANALYSIS OF THE METHOD FOR ESTIMATING
THE CONVEXITY OF THE OF LANDSCAPE

Let us consider the problem of estimating the
convexity characteristics of the OF landscape f(x) in
the vicinity Qy of the local minimum x*, where the
following condition is satisfied:

f(x)>f(x*),VXeQX. (3)

We will search for a degree approximation of the OF
changes in the vicinity of x* in the form:

’ 4)

SO f (")~ F(x)=k[x—x"

where ||x|| is the Euclidean norm of the vector x. The
index of degree a is an objective characteristic of the
convexity of the OF landscape. At a > 1, OF is convex,
while at a. < 1, it is concave.

However, the index a does not depend on the value
of OF f{x") at the point of extremum, because when this
value changes by the same amount, the values of OF
at other points will also shift. Therefore, in order to
simplify the record, we will assume f{x") = 0 without
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loss of generality and consider (4) as an approximation
of the OF itself.

Suppose that the point x* is known, the OF is indeed
a power function of the form (4), and the values of
a and k are the same at all points of Q.. Let there be
two trial points x; and x, and the values of the OF at
them are f(x,), f(x,) respectively. Then from the system
of equations

f(xl):k“xl —X*“a 5

” (5)
£ (x2) = k[ =]
we find:
" ln(f("i))‘ln(f(xz))* ‘ ©
([, =x°]) =1, - x])

If the above assumptions are not fulfilled, this
estimate will be approximate. Let us estimate the errors
arising in this case.

Suppose that the local minimum position x’
found in the search process differs from the true
position x” (Fig. 1):

X =X +Ax. (7)

In this case we have the estimation:

ln(f(xl))_ln(f(xz)) '
In [, = x) = In|x; - <)

X3

&:

®)

*

Fig. 1. Analysis of errors at inaccurate determination
of the position of the OF minimum

By dividing (8) by (6) and expressing the distances
from trial points x,, X, to the true minimum x" through
the known distances to x’ using the cosine theorem, we
get:

&l =x)-m(fes ) _
(04

“ o il - x[)=In(lx; -x)

B ﬁ.Sln("x1 - x'"2 + ||A1;{||2 - 2||X1 - x'"”Ax" N 1)

O
in(x, - x)
05, x|+ [axff - 2[x; - x[-|ax]-cos,
In e, =)

Here y, and v, are the angles between the vectors
(x; —x'), (x, —X') and the vector Ax, respectively.

The value of K,, which does not depend on the
values of OFs in the trial points, is invariant to changes
in the scale of distance measurements, making it
a convenient characteristic of the estimation & error.
We will assume that "X1 - x'” > ||X2 - X'” and normalize

all distances to ||X2 - X'". Figure 2 shows the results of
calculating by (9) the dependencies of the value of K, on
the distance ||AX|| from the true to the found position of
the minimum for several combinations of parameters
given in Table 1. This assumption is based on the fact
that, as will be seen from the following analysis, the
angles between the directions to the sample points must
be sufficiently small to obtain reliable estimates Q..

Table 1. Parameters of examples of calculation of the
K, dependence on the distance ||Ax||

Examples [Ix; — x| [, — x| v, W,
Example 1 10 1 90 90
Example 2 10 1 100 80
Example 3 10 1 80 100
Example 4 10 1 30 30
Example 5 10 1 150 150
Example 6 3 1 90 90
Example 7 30 1 90 90
4.0
4
3.5
3.0 w L
A
2.5 y
LN
¥ 2.0
"l
*| 4
1.5 AR
p 1
1.0 —atu THE | al .
0.5
0
0.01 0.10 1.00 10.00
llAx]|
+ Example 1 4« Example 3 * Example 5 4+ Example 7
= Example 2 = Example 4 = Example 6

Fig. 2. Dependencies of the ratio K, of the estimate &
to the true value of a on the distance ||Ax|| from the true
to the found minimum position
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The above results allow us to conclude that the error
of the index estimation is small in cases when the
distances to both trial points are significantly larger than
the distance from the true position to the found position
of the minimum. More specifically, when the inequality
||Ax|| <0. 1||X2 - x'” is satisfied, the deviation of K, from
unity does not exceed 0.1, which can be considered
acceptable for approximate estimation of the convexity
of the OF landscape.

Next, we consider the estimation & error due to the
differences in the values of a, and a,, as well as k; and
k, along the directions from the point of minimum X" to
the points x, and x,. From (6) we obtain:

hl(f("l))_ln(f(xz))

(s, <) n(f )
el e i

IR Y (S
_a+ In(k /k; ) _

in(fx, =/ x> -x])

Aocln(“x1 - x*”-”xz -x" )
I, [ Jx, =)

O(.1+O(.2

(o}

) (10)

Oy — 0O
, Ao= 2 L
2

where o =

Let us take the arithmetic mean of the indices for the
two sample points O as the correct estimate of the
indicator a. From (10), we obtain the ratio for calculating
the absolute error of this estimation.

In(k /ky)

E =6-a= -
© (e )

Aaln (Hxl -x" ““Xz -x" )
([ = x] Jxo =x7[) -

The first summand shows the contribution to the
estimation & error of the difference in the k coefficients
at the two trial points, and the second summand shows
the contribution of the difference in the o indices.

Figure 3 shows examples of dependencies of the
error magnitude £, on the distance of the second trial
point from the minimum [[x, — x||. The parameters
are the distance of the first trial point from the
minimum ||x; — x'||, as well as the ratio k,/k, and the value
Ao introduced above, which characterize the differences
of the parameters of the degree approximation at the two
points. The values of these parameters for each example
are given in Table 2.

Table 2. Parameters of examples of calculation of the E
dependence on ||x, - x’|| values

Examples IIx, = x| kylky Ao
Example 1 1 2 0

Example 2 1 1 0.2
Example 3 10 1 0.2
Example 4 100 1 0.2
Example 5 10 2 0.2
Example 6 10 0.5 0.2

Example 1 shows the case when the exponent o
is constant in all directions, but the coefficient k varies.
The error increases with distance [|x, — x'|| as the
denominator of the first summand decreases. In the
next three examples, only the exponent o changes.
The dependencies are different for different values
of ||x; — x'|| due to the fact that the second summand
in (11)is not invariant to changes in the scale of distances.
The absolute value of £ with increasing [|x, — x| can
both increase and decrease, or even turn to 0 if the
equation [|x; — x| - IIx, — x'|| = 1 is satisfied. In the
examples presented in rows 5 and 6, both error
components are present. The direction of change and the
sign of the total error can be different depending on the
ratio of parameters.

0.35
0.30 ®
*
0.25 +
L 3

0.20 e 1
o5 T P TTrIglisedeleodblill

’ . PR 3

»> ¢ 9
Luc 010 AL 4 |4 4 4 lafd )

0.05 45— SR e

ooolteeaf el Telely
T L " L™

-0.05 Te. .

. I L
-0.10

* L
-0.15 +
-0.20
0.001 0.010 1.000
lIxo — x*|

+ Example 1 4 Example 3 * Example 5
= Example 2 = Example 4 * Example 6

Fig. 3. Dependencies of the difference E_ of the degree
index estimation & and the accepted as true value a
on the distance of the nearest sample point to the point
of minimum

Thus, the value of the error £ is affected by the values
of the differences between the parameters £ and o at the
two sample points, and these differences in most cases
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will be less the smaller the angle between the directions
to the sample points from the point of minimum.

The real OF is approximated by a step function of
the form (4). In the general case, the approximation will
have the form of a step series. Let us consider what
information about the convexity of the landscape can be
given by the estimation & by two trial points. Let the
OF be the sum of two degree functions:

f(x) =k Hx - x*Hal +k, ”x - X*H% (12)
The relation (8) takes the form:
m(k] [ x| gy " )
&= _
1 _ *

S I

iy ="+ ey =

in(fx, —x]) |

Figure 4 shows examples of dependencies & on the
distance between the first trial point and the
extremum |[|x; — x'|| for the combinations of parameters
given in Table 3.

Table 3. Parameters of examples of calculation of
dependence & on the values [x; — x|

Examples | o, 0, ky ky IIx, — x*||/\|x2 —x|
Example 1| 1 2 0.5 | 05 10
Example 2| 1 2 02 | 0.8 10
Example 3| 1 2 0.8 | 0.2 10
Example 4| 1 2 05 | 05 3

2.0

1.8 e

e . ’ o o R O
3 . " . * .

1.4 - - Tt

. *
L] * A
. * A 4 4 L
1.2 +——— e
td * A - b ‘ :
1.0 #
0.8
0 1 2 3 4 5
Iy = x|

+ Example 1 = Example 2 s+ Example 3 + Example 4

Fig. 4. Dependencies of the degree index & estimation
on the distance ||x, — x"|| at different combinations
of parameters in relation (13)

In all the considered examples, the estimation of the
degree index & changes from a smaller value o, to
a larger value o, as the distances of the reference points
to the minimum point increase. The rate of this change
depends on the ratios of the weight coefficients &, k, in (12)
(examples 2 and 3), as well as on the ratio of the distances
of the two reference points to the minimum
point (example 4). Similar regularities will occur with
a larger number of summands of the step series. These
results should be taken into account when analyzing the
convexity of the real OFs.

EXPERIMENTAL

The aim of the experiments was to test the possibility
of obtaining reliable estimates ¢ using the described
method. The methodology of experiments included
obtaining sets of trial points in the process of searching
for the minimum of the OF and subsequent processing
of the collected data to obtain estimates ¢ at different
parameters of selection of pairs of trial points. The
experiments were performed using MATLAB' programs.

The well-known and widely used particle swarm
optimization (PSO) algorithm [13], which, as the
experience of its use shows, allows finding extrema
of both convex and nonconvex OFs [14], was used
as a minimum search method. With the help of this
algorithm we searched for the minimum of test functions
from the set [15] often used in such studies, as well as
specially developed test functions. Information about
the test functions will be given below together with the
results of experiments. MATLAB function implementing
the PSO algorithm was modified to return to the program
calling it a data array containing the coordinates of all
swarm particles in all iterations and the corresponding
OF values. Subsequent processing of this data included
the following steps:

1. Determination of the coordinates of the found
minimum x’ and the value of the OF at this point
SX).

2. Calculation of distances of all trial points x from the
found minimum x’ and selection by fulfillment of
the inequalities d,;, <|x—x/|<d .., where
d i 4. are the set thresholds. The value d ;.

affects the estimation @& error determined by the

relation (9). The value &, determines the size of
the vicinity x’, within which the estimation o is
calculated.

3. Calculation of the entropy of the distribution of trial
points along the orthants of the coordinate system
centered on the point of the found minimum x'. The
entropy value is determined by the formula:

I https://www.mathworks.com/products/matlab.html.
Accessed February 14, 2025.
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Nort
H==% Rlog,F,
i=1

(14)

where P; is the probability of the point getting into
the ith orthant; Nort is the number of orthants equal
to 2VP; ND is the dimensionality of the search
space. This value gives an estimate of uniformity
of distribution of trial points in different directions
from the found minimum.

. Calculation of the angles ¢, between the directions
to the trial points x;, X; included in all possible pairs
from the previously selected trial points.

. Selection of pairs of points x,, X; for estimation of
the parameters of the degree approximation. The
selection conditions are formulated on the basis of
the above analysis of errors of the method.

[ -1
0 < Pppa 1nmz .
X, —

J

(15)

where ¢ . and C, are the given parameters,
and it is assumed that the point x; is farther from
the found minimum than the point X;. The value
of C, determines the minimum of the denominator
in (11). The value of ¢, determines the maximum
angle between the directions to the points of the pair.

Table 4. Initial parameters of the experiments

6. Calculation of the entropy of the distribution of the
selected pairs by orthants, similarly to item 3, which
gives an estimate of the completeness of information
about the indicator a in different directions.

7. Calculation of estimates of the degree approximation
index & for the selected pairs of points according to
relation (8). Formation of the histogram of the values
of these estimates. Calculation of statistical
characteristics of their distribution.

Examples of the results of application of the described
method are given below. In the cases of isotropic OFs, in
which the parameters of the power function (4) are the
same in all directions from the minimum, the proposed
method finds the values of these parameters with high
accuracy. Such examples are not considered here, and
attention is paid to anisotropic OFs, for which it is
expected that there are errors due to differences in the
parameters of the power function in different directions.
For all used OFs, the equation f{x") = 0 is satisfied, which,
as explained earlier, does not lead to a loss of generality
of the results.

The data are divided into two tables. Table 4
shows the initial parameters of 12 experiments. The
dimensionality of the search space in all experiments
is 4. The column “Npoim” gives the total number of trial
points collected during the search for the minimum.
The next column gives the distance between the found
minimum x’ and the true minimum position x*. This

Exp. Function Nooint x> — x| di d.. Prax @
1 ellips 1980 7.11-107° 1.00- 1078 10 10 2
2 ellips 1980 7.11-1073 0.001 10 10 2
3 ellips 1980 7.11-1073 0.001 10 2 2
4 ellips 1980 7.11-1073 0.001 10 10 6
5 ellips 1980 7.11-1073 0.001 10 2 6
6 diffpowers 1120 1.03 - 1072 1.00- 1078 10 10 2
7 diffpowers 1120 1.03 - 1072 0.001 10 10 2
8 diffpowers 1120 1.03 - 1072 0.1 10 10 2
9 diffpowers 1120 1.03-1072 0.1 10 30 2
10 TestLE4 1420 1.20-1073 1.00- 1078 10 10 2
11 TestLE4 1420 1.20-1073 0.01 10 10 2
12 TestLE4 1420 1.20-1073 0.1 10 10 2
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value is given for reference and is not used by the
algorithm since the true position of the minimum is
assumed to be unknown. The following columns contain
the values of the parameters by which the sample points
and their pairs are selected.

Table 5 shows the results of these experiments. Here
Neel. point and H point 4r€ the number of points selected
according to item 2 and the entropy of their distribution
over orthants, Npair, Hpair are the same parameters for
pairs of points selected according to item 5. The
following columns contain the parameters of the
distribution of the estimations & for the selected pairs:

minimum (min), mean (mean), median (med), maximum

Table 5. Results of experiments

(max), standard deviation (std), skewness (skew), and
kurtosis (kurt). Histograms of the estimation & values
for the experiments 5, 9, and 12 are shown in Fig. 5.
Let us proceed to analyze the results of the
experiments.
In experiments 1-5, we studied the function
ellips(x) [15], formed according to the equation:

/(%)= %)(xn — ) 106D g

n=l1

where x = (x,, ..., X)) are the coordinates of the point,
X =(x,..., Xyp) are the coordinates of the minimum.

Exp. Nsel_p ofit Hsel_p oftin Npair Hpair min mean med max std skew kurt
1 1978 3.845 202413 3.659 0.0003 1.916 1.926 6.545 0.414 0.590 9.351
2 1698 3.775 148938 3.515 0.0003 1.943 1.951 6.545 0.432 0.702 9.199
3 1698 3.775 41786 3.499 0.052 1.951 1.972 4.517 0.301 —0.045 9.988
4 1698 3.775 33095 3.263 0.929 1.940 1.947 3.523 0.231 0.658 7.901
5 1698 3.775 8982 3.222 1.025 1.953 1.969 2.799 0.142 | —0.038 7.830
6 1118 3.766 506 3.367 2.447 4.803 4.769 6.564 0.937 | —0.381 2.319
7 1118 3.766 506 3.367 2.447 4.803 4.769 6.564 0.937 | —0.381 2.319
8 744 3.668 123 3.305 2.755 4.924 4.941 6.249 0.877 | —0.382 2.277
9 744 3.668 3373 3.329 2.015 4.562 4.578 6.287 0.954 | —0.222 2.271
10 1419 3.706 24438 3.012 0.568 2.615 2.763 3.561 0.435 | —2.237 7.655
11 1196 3.710 1078 3.155 0.568 2.534 2.823 3.033 0.578 | —1.482 3.981
12 805 3.654 165 2.707 0.568 1.685 1.494 3.016 0.635 0.467 2.355
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Fig. 5. Histograms of evaluation a: values: (a) experiment 5, (b) experiment 9, (c) experiment 12
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For this OF, the degree exponent a = 2 in all directions,
and the coefficient & varies in different directions in the
range from 1 to 10°.

In all experiments with this function, the mean
and median values of the estimate & are close to the
correct value of 2. The range of estimates from
minimum to maximum narrows as the constraints on
pair selection become stronger, and the standard
deviation decreases and reaches in experiment 5
a value of about 7% of the mean value, which can be
recognized as quite satisfactory. At the same time, the
shape of the distribution function of estimates turns
out to be symmetric and with a sharp peak (Fig. 5a).
The entropy of the distribution of selected points by
orthants is close to the maximum value of 4. The
entropy of the distribution of the selected pairs is
smaller, but from the histogram of this distribution
(not given here) we can see that in experiments 1-5 all
orthants are represented, i.e., all directions are taken
into account in the first approximation. This
is also true for the other functions considered
below.

In experiments 69, the function diffpowers(x) [15]
defined by the relation:

(x)= ff(xn s )(2+4(n—1)/(ND—1)), a7

n=l1

where the notation is the same as in (16). This function is
the sum of degree functions from different components
of the point coordinate vector. Degree exponents vary in
the range from 2 to 6.

In experiments 6-8, the parameter d _; increases
successively, and the number of selected pairs of points
decreases. In experiment 7, this leads to narrowing of the
range of estimates &, but in experiment 8, the number
of sampled pairs of points becomes too small, and the
lower limit of the range is shifted downward. In
experiment 9, the tolerance ¢, on the angle between
the points of a pair is increased. As a result, the number
of selected pairs has increased significantly, and the
boundaries of the range of estimates & (from 2 to 6) are
defined with acceptable errors. At the same time, the
histogram of & values for this experiment is significantly
different from zero in the whole range
from 2 to 6 (Fig. 5b), which is an indication of the
difference of the index in the degree approximation in
different directions.

In the standard set of test functions [15] there is no
function whose landscape in the region of minimum
can be made both convex and concave. To obtain
such properties, several additional test functions were
developed. Below we present the results of experiments

with one of them—TestLE4(x) calculated by the
following relations:

fx) =kz]",
Z=X-X,
” 1" Z(Klnznh(z )+ K,,22h(-z,)),  (18)
VA
” P — > M, 22h(z,) + Wy, 22h(=2,)),
Z| n=l
1, y>0,
h)= { 0, y<0.

The variables K, and W, are elements of
matrices K and W, which have dimensions 2 x ND,
and represent the values of coefficients and degree
exponents, respectively, along the positive and negative
directions of all coordinates of the search space. The
resulting values of the degree exponent & and coefficient
a along the direction to the trial point are obtained by
interpolation between the values of these quantities
along the coordinate axes. Thus, the possibility of
arbitrary setting of the parameters of the degree function
along different coordinates and smooth changes of these
parameters along intermediate directions is provided.

In experiments 10-12, the following parameter
matrices were specified:

(315 05 1 1235
15 21 07) 3105 1)

The function is convex in some directions and
concave in others, and the rate of change of the function
is also different in different directions. The range of
values of the degree exponent is from 0.5 to 3.

In experiments 10—12, the point selection threshold
d_., was consistently increased. As a result, the number
of selected points and pairs decreased. At the same time,
the maximum value of the estimate & decreased
insignificantly, the minimum value remained unchanged,
and the value of the distribution excess decreased
significantly, i.e., the distribution became more uniform.
The accuracy of estimation of the range & boundaries
can be considered acceptable. The histogram of
estimation values is different from zero in the whole
range from the lower to the upper boundaries.

These examples represent a part of the experimental
data obtained using different test functions. In addition,
besides the PSO algorithm, the differential evolution
algorithm [13] and covariance matrix adaptation
evolution strategy [16] were used.
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CONCLUSIONS

The experimental results confirm the feasibility of
the described method to obtain objective information
about the convexity of the OF in the neighborhood of
the found minimum at appropriate setting of parameters
of sampling points and their pairs.

The development of a more detailed method for
setting the selection parameters will require further
work. One of the possible options in this respect is to
automate the process of sequential change of these
parameters, rather than performing this operation
manually as was done when obtaining the results

described above. In this connection, the criteria for
selecting parameters can be obtained from statistical
characteristics and the shape of the histogram of the
distribution of estimates &. To obtain more
information about the convexity of the landscape, in
addition to that presented in the above histogram, it is
necessary to analyze the distribution of values & by
distances from the point of the found minimum, as
well as the multivariate distribution by distances and
directions.

The described method of convexity estimation can
become an integral part of the technique of analyzing the
OF landscape properties.
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