Микро- и наноэлектроника. Физика конденсированного состояния Micro- and nanoelectronics. Condensed matter physics

УДК 537.632 https://doi.org/10.32362/2500-316X-2025-13-1-115-121 EDN OABAYG

НАУЧНАЯ СТАТЬЯ

Магнитооптический экваториальный эффект Керра в нанокомпозитах $Co_x(CoO)_{1-x}$

М.М. Яшин [®], В.Е. Рябухин, А.Н. Юрасов

МИРЭА – Российский технологический университет, Москва, 119454 Россия [®] Автор для переписки, e-mail: yashin@mirea.ru

Резюме

Цели. Целью работы является получение и исследование спектров магнитооптического экваториального эффекта Керра (ЭЭК) в нанокомпозитах $Co_x(CoO)_{1-x}$, сравнение полученных результатов с экспериментальными данными, выявление их особенностей. Подобные исследования являются, безусловно, важными, как с фундаментальной точки зрения, так и с практической, т.к. магнитооптическая спектроскопия – метод неразрушающего контроля и исследования широкого класса наноструктур с перспективными и интересными свойствами.

Методы. Для достижения поставленной цели применялось компьютерное моделирование в рамках перспективного метода эффективной среды – приближения Бруггемана, согласно которому исследуемая структура заменяется средой с эффективными свойствами.

Результаты. Изучены экспериментальные спектры ЭЭК и в рамках компьютерного моделирования получены спектры эффекта Керра в диапазоне 1.5–3.0 эВ. При этом моделирование проводилось двумя способами: без учета и с учетом квазиклассического размерного эффекта. Конечным результатом стало сопоставление модельных и экспериментальных спектров эффекта Керра, где было показано влияние размерных эффектов на вид спектров ЭЭК. Достоверность методик хорошо подтверждается сравнением полученных результатов с эмпирическими данными, а ценность полученных результатов обусловлена тем, что все рассчитанные параметры обсуждаемого нанокомпозита и форма спектральных зависимостей ЭЭК хорошо согласуются с результатами наблюдений.

Выводы. В рамках компьютерного моделирования установлены оптимальные параметры исследуемого образца: форм-фактор, средний размер гранул, коэффициент аномального эффекта Холла. Описанный подход позволяет бесконтактным и неразрушимым способом изучать магнитооптические свойства перспективных наноматериалов, а полученные результаты являются важными при создании новых типов устройств, а также элементов электроники и наноэлектроники.

Ключевые слова: нанокомпозиты, теория эффективной среды, экваториальный эффект Керра, оксид кобальта, размерные эффекты

Поступила: 26.04.2024
 Доработана: 17.05.2024
 Принята к опубликованию: 28.11.2024

Для цитирования: Яшин М.М., Рябухин В.Е., Юрасов А.Н. Магнитооптический экваториальный эффект Керра в нанокомпозитах $Co_{\chi}(CoO)_{1-\chi}$. *Russian Technological Journal.* 2025;13(1):115–121. https://doi.org/10.32362/2500-316X-2025-13-1-115-121, https://elibrary.ru/OABAYG

Прозрачность финансовой деятельности: Авторы не имеют финансовой заинтересованности в представленных материалах или методах.

Авторы заявляют об отсутствии конфликта интересов.

RESEARCH ARTICLE

Magneto-optical transverse Kerr effect in $Co_x(CoO)_{1-x}$ nanocomposites

Maxim M. Yashin [®], Vitaly E. Ryabukhin, Alexey N. Yurasov

MIREA – Russian Technological University, Moscow, 119454 Russia [®] Corresponding author, e-mail: yashin@mirea.ru

Abstract

Objectives. The aim of this paper is to attain and investigate the spectra of the magneto-optical transverse Kerr effect (TKE) in $\text{Co}_{\text{x}}(\text{CoO})_{1-\text{x}}$ nanocomposites, to compare the obtained results with experimental data, and identify their specific features. Magneto-optical spectroscopy is a method for non-destructive testing and research of a wide class of nanostructures with promising and interesting properties, and such studies are essential in terms of both fundamental and practical aspects.

Methods. Computer modeling is used as part of the promising effective medium method. This is in the form of the Bruggeman approximation, according to which the structure under study is replaced by a medium with effective properties.

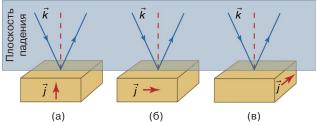
Results. TKE experimental spectra were studied and Kerr effect spectra in the range of 1.5–3.0 eV were obtained by computer modeling. In this case, the modeling is performed by means of two methods, ignoring and considering the quasiclassical size effect. The final result is the comparison of the model and experimental Kerr effect spectra, in which the influence of size effects on the appearance of the TKE spectra is shown. The reliability of methods is well confirmed by comparing the results obtained with empirical data. The value of the results obtained stems from the fact that all the calculated parameters of the nanocomposite under study and the shape of TKE spectral dependencies are in good agreement with the observation results.

Conclusions. The optimal parameters of the sample under study are established as part of computer modeling: form factor, average granule size, and the anomalous Hall effect coefficient. The described approach allows the magneto-optical properties of promising nanomaterials to be studied in a non-contact and non-destructive manner. These results are useful for creating new types of devices as well as electronics and nanoelectronics elements.

Keywords: nanocomposites, effective medium approach, transverse Kerr effect, cobalt oxide, size effects

• Submitted: 26.04.2024 • Revised: 17.05.2024 • Accepted: 28.11.2024

For citation: Yashin M.M., Ryabukhin V.E., Yurasov A.N. Magneto-optical transverse Kerr effect in $Co_x(CoO)_{1-x}$ nanocomposites. *Russian Technological Journal.* 2025;13(1):115–121. https://doi.org/10.32362/2500-316X-2025-13-1-115-121, https://elibrary.ru/OABAYG


Financial disclosure: The authors have no financial or proprietary interest in any material or method mentioned.

The authors declare no conflicts of interest.

ВВЕДЕНИЕ

В современной электронной отрасли активно применяются результаты работы в области магнитооптики. Магнитооптика – раздел физики, изучающий
явления, возникающие в результате взаимодействия
электромагнитного излучения (оптического диапазона в инфракрасной (ИК), видимой и ближней ультрафиолетовой области спектра) с намагниченным
веществом. Одним из магнитооптических эффектов
является экваториальный эффект Керра (ЭЭК), описание которого представлено на рис. 1.

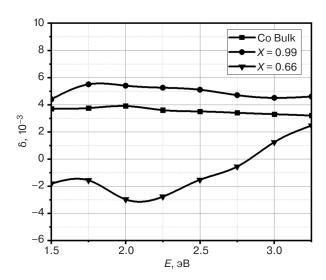

ЭЭК активно используется при исследовании наноструктур, магнитном чтении и записи информации с магнитных дисков. Современные тенденции развития устройств хранения информации ведут к поиску новых материалов в области магнитных гранулированных сплавов и нанокомпозитов.

Рис. 1. Эффект Керра в полярной (а), меридиональной (б) и экваториальной (в) геометрии. \vec{k} – волновой вектор; \vec{j} – намагниченность

В связи с этим изучение свойств перспективных наноструктур сегодня является актуальной задачей с учетом возможного значительного усиления важных с практической точки зрения эффектов, таких как магнитосопротивление, квантовые эффекты Холла, магниторефрактивный эффект и многие другие [1–3]. Интересным примером наноструктуры служит нанокомпозит на основе Со—СоО, а моделирование наблюдаемых оптических и магнитооптических эффектов позволяет бесконтактным способом оценивать различные характерные параметры исследуемых образцов [4–7].

В результате эксперимента, описанного в [8, 9], получены спектральные зависимости параметра ЭЭК (δ) в экваториальной геометрии нанокомпозита $\operatorname{Co}_{x}(\operatorname{CoO})_{1-x}$ при различных значениях объемной доли X кобальта (рис. 2).

Рис. 2. Экспериментальные спектры ЭЭК нанокомпозита $Co_x(CoO)_{1-x}$ [8, 9]. *E* – энергия электромагнитной волны. Bulk – массивный образец

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И МЕТОДИКА РАСЧЕТА

Феноменологическая теория магнитооптических эффектов — это решение уравнений Максвелла с учетом рассмотрения диэлектрической проницаемости в матричной (тензорной) форме, $\hat{\epsilon}$ — тензор диэлектрической проницаемости (ТДП):

$$\hat{\varepsilon} = \begin{pmatrix} \varepsilon & i\gamma & 0 \\ -i\gamma & \varepsilon & 0 \\ 0 & 0 & \varepsilon \end{pmatrix}. \tag{1}$$

Вектор магнитной индукции направлен вдоль оси z, а ϵ и γ компоненты ТДП имеют вид:

$$\begin{split} & \gamma = \gamma_1 - i \gamma_2, \\ & \varepsilon = \varepsilon_1 - i \varepsilon_2, \end{split} \tag{2}$$

где ϵ и γ являются комплексными величинами. При этом ϵ_1 и γ_1 — действительная часть диагональных и недиагональных компонент ТДП, а ϵ_2 и γ_2 — мнимая часть компонент ТДП, соответственно.

Любой магнитооптический эффект однозначно выражается через компоненты ТДП. Магнитооптические эффекты позволяют разделять вклад левой и правой спиновых подзон, а исследование частотных зависимостей мнимых частей диагональных и недиагональных компонент ТДП дает полную информацию о зонной структуре исследуемой среды.

Магнитооптические эффекты позволяют визуализировать доменную структуру, что делает их важнейшими инструментами в исследовании магнитных нано- и микрообъектов, в т.ч. рабочей зоны магнитных головок и доменных границ [1–6].

Глобальным преимуществом магнитооптической Керр-спектроскопии является возможность с помощью ЭЭК определять недиагональные компоненты тензоров, а в практическом отношении — «отсеять» шумы и наводки в экспериментальной установке. При этом экспериментально измерять параметр эффекта Керра δ возможно только на р-компоненте, т.к. на s-компоненте в металлических ферромагнетиках $\delta_{\rm s}$ -эффект на 2—3 порядка меньше по сравнению с δ [9]:

$$\delta = (A\gamma_1 + B\gamma_2) + \frac{2\sin 2\varphi}{A^2 + B^2},$$
 (3)

где $A = \varepsilon_2(2\varepsilon_1\cos^2\phi - 1), B = \cos^2\phi(\varepsilon_2^2 - \varepsilon_1^2 + 1) + \varepsilon_1 - 1,$ ϕ — угол падения света.

Оптимальной при описании спектральных зависимостей наноструктур и нанокомпозитов, в частности, является теория эффективной среды [10]. В ИК-области спектра в данной теории необходимо учитывать значительное влияние квазиклассического размерного эффекта, что связано с внутризонными переходами [11]. Размерные эффекты учитываются варьированием форм-факторов частиц L и добавками в диагональные и недиагональные компоненты ТДП ферромагнитной компоненты нанокомпозита, что связано с рассеянием электронов на поверхностях гранул. Окончательно с учетом вклада в ТДП размерных эффектов, согласно модели Друде — Лоренца, компоненты ТДП представляются в виде [11]:

$$\varepsilon_{\text{mod}} = \varepsilon_{\text{Co}} + \frac{\omega_{\text{p}}^{2}}{\omega(\omega + i/\tau_{\text{bulk}})} - \frac{\omega_{\text{p}}^{2}}{\omega(\omega + i/\tau_{\text{part}})},$$

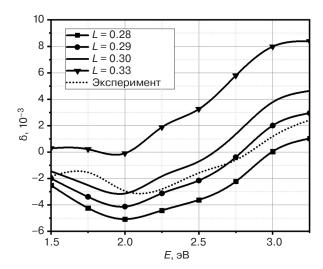
$$\gamma_{\text{mod}} = \gamma_{\text{Co}} - \frac{4\pi\sigma_{xy}^{\text{bulk}}/\tau_{\text{bulk}}^{2}}{\omega(\omega + i/\tau_{\text{bulk}})^{2}} + \frac{4\pi\sigma_{xy}^{\text{gr}}/\tau_{\text{part}}^{2}}{\omega(\omega + i/\tau_{\text{part}})^{2}},$$
(4)

где $\varepsilon_{\mathrm{Co}}$ и γ_{Co} — диагональные и недиагональные компоненты ТДП ферромагнетика, в данном случае кобальта; ω — частота падающей электромагнитной волны; ω_{p} — плазменная частота; τ_{bulk} , τ_{part} — среднее время пробега электрона в массивном образце и грануле соответственно; $\sigma_{xy}^{\mathrm{bulk}} = 4\pi M_{\mathrm{s}} R_{\mathrm{bulk}} / \rho_{\mathrm{bulk}}^2$; $\sigma_{xy}^{\mathrm{gr}} = 4\pi M_{\mathrm{s}} R_{\mathrm{gr}} / \rho_{\mathrm{gr}}^2$; M_{s} — намагниченность насыщения ферромагнетика;

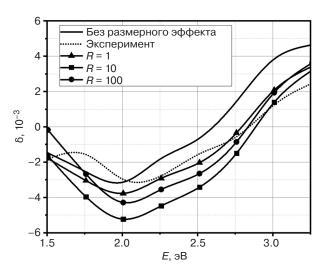
 $R_{\rm gr}$ и $R_{\rm bulk}$ – коэффициент аномального эффекта Холла (АЭХ) гранул и массивного образца; $\rho_{\rm bulk}$ – удельное сопротивление массивного образца; $\rho_{\rm gr}$ – удельное сопротивление гранулы. Размерный эффект проявляется как в параметре АЭХ, так и в удельном сопротивлении:

$$R_{\rm gr} = R_{\rm bulk} + 0.2R \frac{l}{r_0} \left(1 + \frac{l}{r_0} \right),$$
 (5)

$$\rho_{\rm gr} = \rho_{\rm bulk} \left(1 + \frac{l}{r_0} \right), \tag{6}$$


где R — значение параметра АЭХ материала поверхности гранул, r_0 — размер частиц нанокомпозита и l — длина свободного пробега.

В дальнейшем выражения (4), (5) подставляются в формулы эффективной среды (см., например, [6]) и окончательно в (3).


РЕЗУЛЬТАТЫ МОДЕЛИРОВАНИЯ

В рамках перспективного метода эффективной среды — приближения Бруггемана [12] по формулам (1)—(3) получены значения параметра ЭЭК с учетом различной формы частиц L (форм-фактор) без учета размерного эффекта и проведено сравнение с экспериментальными данными, которые были получены в научной лаборатории кафедры магнетизма физического факультета МГУ им. М.В. Ломоносова [12] (рис. 3). В качестве образца для сравнения был выбран нанокомпозит с объемной долей кобальта X = 0.66.

Как видно из рис. 3, наилучшее согласие наблюдается при L=0.3. Для более точного описания ЭЭК рассмотрим влияние квазиклассического размерного эффекта (формулы (4) и (5)) (рис. 4).

Рис. 3. Модельные спектры ЭЭК нанокомпозита $Co_{\chi}(CoO)_{1-\chi}$ без учета размерного эффекта при различных значениях форм-фактора частиц

Рис. 4. Модельные спектры ЭЭК нанокомпозита $Co_x(CoO)_{1-x}$ без учета размерного эффекта и с учетом размерного эффекта при различных значениях параметра АЭХ R

Как видно из рис. 4, учет квазиклассического размерного эффекта позволяет лучше описать изменение ЭЭК в ближней ИК-области спектра. Наилучшее совпадение модельных и экспериментальных кривых наблюдается при R=1, при этом также установлен средний размер гранул нанокомпозита $\mathrm{Co_{x}CoO_{1-x}}$, который составляет $r_{0}=2.5$ нм. Полученные результаты являются важными при создании новых типов устройств, а также элементов электроники и наноэлектроники [13–15].

ЗАКЛЮЧЕНИЕ

В результате проведенной работы получены модельные спектры ЭЭК в нанокомпозите $\mathrm{Co}_{x}(\mathrm{CoO})_{1-x}$, а также проведено их сравнение с экспериментальными данными.

Показана важность учета вклада влияния форм-фактора частиц, а также квазиклассического размерного эффекта на вид спектральных

зависимостей ЭЭК. В рамках компьютерного моделирования установлены оптимальные параметры исследуемого образца: форм-фактор, средний размер гранул, а также коэффициент АЭХ.

Таким образом, описанный подход позволяет бесконтактным и неразрушимым способом изучать магнитооптические свойства перспективных наноматериалов.

БЛАГОДАРНОСТИ

Работа выполнена при поддержке программы «Акселератор 4.0 РТУ МИРЭА вторая волна» и при поддержке Министерства науки и высшего образования Российской Федерации (Государственное задание для университетов № ФГФЗ-2023-0005).

ACKNOWLEDGEMENTS

The study was supported by the program "Accelerator 4.0 RTU MIREA second wave" and the Ministry of Science and Higher Education of the Russian Federation (State Assignment for Universities No. FGFZ-2023-0005).

Вклад авторов

М.М. Яшин – моделирование, обсуждение результатов, написание и редактирование текста.

В.Е. Рябухин – обработка литературных источников, компьютерное моделирование, обсуждение результатов, написание текста статьи.

А.Н. Юрасов – разработка модели, компьютерное моделирование, обсуждение результатов, написание текста статьи.

Authors' contributions

M.M. Yashin – computer simulation, discussion of results, and writing and editing the text of the article.

V.E. Ryabukhin – processing of literary sources, computer simulation, discussion of results, and writing the text of the article.

A.N. Yurasov – model development, computer simulation, discussion of results, and writing the text of the article.

СПИСОК ЛИТЕРАТУРЫ

- 1. Gan'shina E.A., Golik L.L., Kun'kova Z.E., Zykov G.S., Rukovishnikov A.I., Markin Yu.V. Magnetic inhomogeneity manifestations in the magneto-optical spectra of (In-Mn)As layers. *IEEE Magn. Lett.* 2020;11:2502105. https://doi.org/10.1109/LMAG.2020.2982849
- 2. Ганьшина Е.А., Припеченков И.М., Перова Н.Н., Каназакова Е.С., Овешников Л.Н., Джалолиддинзода М., Риль А.И., Грановский А.Б., Аронзон Б.А. Магнитооптическая спектроскопия композитов GaSb–MnSb. *Известия Российской академии наук. Серия физическая*. 2023;87(3):328–332. https://doi.org/10.31857/S0367676522700570
- 3. Granovsky A.B., Khanikaev A.B., Kioussis N., Kalitsov A.V. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys. *J. Magn. Magn. Mater.* 2003;258–259:87–89. https://doi.org/10.1016/S0304-8853(02)01119-8
- 4. Звездин А.К., Котов В.А. Магнитооптика тонких пленок. М.: Наука; 1988. 192 с.
- 5. Ganshina E.A., Garshin V.V., Pripechenkov I.M., Ivkov S.A., Domashevskaya E.P., Sitnikov A.V. Effect of phase transformations of a metal component on the magneto-optical properties of thin-films nanocomposites (CoFeZr)_x(MgF2)_{100-x}. *Nanomaterials*. 2021;11(7):1666. https://doi.org/10.3390/nano11071666

- 6. Юрасов А.Н., Яшин М.М., Гладышев И.В., Ганьшина Е.А., Каназакова Е.С., Сайфулина Д.А., Симдянова М.А. Влияние распределения гранул по размерам на магнитооптические свойства нанокомпозитов. *Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки.* 2023;110(5):63–72. URL: https://vestniken.bmstu.ru/catalog/phys/cryst/1111.html
- Blinov M.I., Chernenko V., Prudnikov V.N., Aseguinolaza I.R., Barandiaran J.M., Lahderanta E., Granovsky A.B. Anomalous hall effect in Ni_{47.3}Mn_{30.6}Ga_{22.1}/Mg O(001) thin films. *Phys. Rev. B*. 2020;102(6):064413. https://doi.org/10.1103/PhysRevB.102.064413
- 8. Domashevskaya E.P., Ivkov S.A., Sitnikov A.V., et al. Influence of the relative content of the metal component in the dielectric matrix on the formation and size of cobalt nanocrystals in Co_x(MgF₂)_{100-x} film composites. *Phys. Solid State*. 2019;61(2):71–79. https://doi.org/10.1134/S1063783419020112
- 9. Ганьшина Е.А., Гаршин В.В., Перова Н.Н., Припеченков И.М., Юрасов А.Н., Яшин М.М., Рыльков В.В., Грановский А.Б. Магнитооптическая керр-спектроскопия нанокомпозитов. *Журнал экспериментальной и теоретической физики*. 2023;164(4):662–672. https://doi.org/10.31857/S0044451023100188
- Юрасов А.Н., Яшин М.М. Методы эффективной среды как оптимальные методы моделирования физических свойств наноструктур. Российский технологический журнал. 2020;8(5):68–77. https://doi.org/10.32362/2500-316X-2020-8-5-68-77
- 11. Алешников А.А., Калинин Ю.Е., Ситников А.В., Федосов А.Г. Магнитные свойства многослойных структур на основе нанокомпозитов $(Co_{45}Fe_{45}Zr_{10})_x(Al_2O_3)_{100-x}$. Перспективные материалы. 2012;5:68–75.
- Sitnikov A.V., Makagonov V.A., Kalinin Y.E., Kushchev S.B., Foshin V.A., Perova N.N., Ganshina E.A., Granovsky A.B. Magnetic, magnetoresistive and structural properties of Co_x(CoO)_{100-x} thin film composites. *J. Magn. Magn. Mater.* 2023;587(39):171154. https://doi.org/10.1016/j.jmmm.2023.171154
- 13. Фадеев Е.А., Блинов М.И., Гаршин В.В., Тарасова О.С., Ганьшина Е.А., Прудникова М.В., Прудников В.Н., Ляхдеранта Э., Рыльков В.В., Грановский А.Б. Магнитные свойства нанокомпозитов $(Co_{40}Fe_{40}B_{20})_x(SiO_2)_{100-x}$ вблизи порога перколяции. *Известия Российской академии наук. Серия физическая.* 2019;83(7):917–920. https://doi.org/10.1134/S0367676519070159
- 14. Михайловский Ю.О., Меттус Д.Е., Казаков А.П., Прудников В.Н., Калинин Ю.Е., Ситников А.С., Гербер А., Бартов Д., Грановский А.Б. Аномальный эффект холла в нанокомпозитах $(Co_{41}Fe_{39}B_{20})_x(Al-O)_{100-x}$. Письма в Журнал экспериментальной и теоретической физики. 2013;97(7–8):544–548.
- Manoharan S.S., Elefant D., Reiss G., Goodenough J.B. Extrinsic giant magne-toresistance in chromium (IV) oxide, CrO₂. Appl. Phys. Lett. 1998;72(8):984–986. https://doi.org/10.1063/1.120616

REFERENCES

- Gan'shina E.A., Golik L.L., Kun'kova Z.E., Zykov G.S., Rukovishnikov A.I., Markin Yu.V. Magnetic inhomogeneity manifestations in the magneto-optical spectra of (In-Mn)As layers. *IEEE Magn. Lett.* 2020;11:2502105. https://doi. org/10.1109/LMAG.2020.2982849
- Gan'shina E.A., Pripechenkov I.M., Perova N.N., et al. Magneto-Optical Spectroscopy of GaSb–MnSb Composites. Bull. Russ. Acad. Sci. Phys. 2023;87(3):282–286. https://doi.org/10.3103/s1062873822701088
 [Original Russian Text: Gan'shina E.A., Pripechenkov I.M., Perova N.N., Kanazakova E.S., Oveshnikov L.N., Dzhaloliddinzoda M., Ril' A.I., Granovskii A.B., Aronzon B.A. Magneto-optical spectroscopy of composites GaSb–MnSb. Izvestiya Rossiiskoi akademii nauk. Seriya fizicheskaya. 2023;87(3):328–332 (in Russ.). https://doi.org/10.31857/S0367676522700570]
- 3. Granovsky A.B., Khanikaev A.B., Kioussis N., Kalitsov A.V. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys. *J. Magn. Magn. Mater.* 2003;258–259:87–89. https://doi.org/10.1016/S0304-8853(02)01119-8
- Zvezdin A.K., Kotov V.A. Magnitooptika tonkikh plenok (Magneto-Optics of Thin Films). Moscow: Nauka; 1988. 192 p. (in Russ.).
- Ganshina E.A., Garshin V.V., Pripechenkov I.M., Ivkov S.A., Domashevskaya E.P., Sitnikov A.V. Effect of phase transformations of a metal component on the magneto-optical properties of thin-films nanocomposites (CoFeZr)_x(MgF2)_{100-x}. Nanomaterials. 2021;11(7):1666. https://doi.org/10.3390/nano11071666
- 6. Yurasov A.N., Yashin M.M., Gladyshev I.V., Ganshina E.A., Kanazakova E.S., Saifulina D.A., Simdyanova M.A. Granule size distribution influence on the nanocomposite magneto-optical properties. *Vestnik MGTU im. N.E. Baumana. Seriya Estestvennye nauki = Herald of the Bauman Moscow State Technical University. Series Natural Sciences*. 2023;110(5):63–72 (in Russ.). Available from URL: https://vestniken.bmstu.ru/catalog/phys/cryst/1111.html
- Blinov M.I., Chernenko V., Prudnikov V.N., Aseguinolaza I.R., Barandiaran J.M., Lahderanta E., Granovsky A.B. Anomalous hall effect in Ni_{47.3}Mn_{30.6}Ga_{22.1}/Mg O(001) thin films. *Phys. Rev. B.* 2020;102(6):064413. https://doi.org/10.1103/PhysRevB.102.064413
- 8. Domashevskaya E.P., Ivkov S.A., Sitnikov A.V., et al. Influence of the relative content of the metal component in the dielectric matrix on the formation and size of cobalt nanocrystals in Co_x(MgF₂)_{100-x} film composites. *Phys. Solid State*. 2019;61(2):71–79. https://doi.org/10.1134/S1063783419020112
- 9. Gan'shina A., Garshin V.V., Perova N.N., et al. Magnetooptical Kerr Spectroscopy of Nanocomposites. *J. Exp. Theor. Phys.* 2023;137(4):572–581. https://doi.org/10.1134/S1063776123100151

- [Original Russian Text: Gan'shina A., Garshin V.V., Perova N.N., Pripechenko I.M., Yurasov A.N., Yahin M.M., Rylkov V.V., Granovskii A.B. Magnetooptical Kerr Spectroscopy of Nanocomposites. *Zhurnal eksperimental'noi i teoreticheskoi fiziki*. 2023;164(4):662–772 (in Russ.). https://doi.org/10.31857/S0044451023100188]
- Yurasov A.N., Yashin M.M. Methods of effective media as optimal methods for modeling the physical properties of nanostructures. Rossiiskii tekhnologicheskii zhurnal. 2020;8(5):68–77 (in Russ.). https://doi.org/10.32362/2500-316X-2020-8-5-68-77
- Aleshnikov A.A., Kalinin Yu.E., Sitnikov A.V., Fedosov A.G. Magnetic properties of multilayer structures based on (Co₄₅Fe₄₅Zr₁₀)_x(Al₂O₃)_{100-x} nanocomposites. *Perspektivnye Materialy*. 2012;5:68–75 (in Russ.).
 Sitnikov A.V., Makagonov V.A., Kalinin Y.E., Kushchev S.B., Foshin V.A., Perova N.N., Ganshina E.A., Granovsky A.B.
- 12. Sitnikov A.V., Makagonov V.A., Kalinin Y.E., Kushchev S.B., Foshin V.A., Perova N.N., Ganshina E.A., Granovsky A.B. Magnetic, magnetoresistive and structural properties of $Co_x(CoO)_{100-x}$ thin film composites. *J. Magn. Magn. Mater.* 2023;587(39):171154. https://doi.org/10.1016/j.jmmm.2023.171154
- 13. Fadeev E.A., Blinov M.I., Garshin V.V., et al. Magnetic properties of $(Co_{40}Fe_{40}B_{20})_x(SiO_2)_{100-x}$ nanocomposites near the percolation threshold. *Bull. Russ. Acad. Sci. Phys.* 2019;83(7):835–837. https://doi.org/10.3103/S1062873819070153 [Original Russian Text: Sitnikov A.V., Makagonov V.A., Kalinin Y.E., Kushchev S.B., Foshin V.A., Perova N.N., Ganshina E.A., Granovsky A.B. Magnetic properties of $(Co_{40}Fe_{40}B_{20})_x(SiO_2)_{100-x}$ nanocomposites near the percolation threshold. *Izvestiya Rossiiskoi akademii nauk. Seriya fizicheskaya.* 2019;83(7):917–920 (in Russ.). https://doi.org/10.1134/S0367676519070159]
- 14. Mikhailovsky Yu.O., Mettus D.E., Kazakov A.P., et al. Anomalous Hall effect in (Co₄₁Fe₃₉B₂₀)_x(Al–O)_{100-x} nanocomposites. *JETP Lett.* 2013;97(8):473–477 https://doi.org/10.1134/S0021364013080110 [Original Russian Text: Mikhailovsky Yu.O., Mettus D.E., Kazakov A.P., Prudnikov V.N., Kalinin Yu.E., Sitnikov A.S., Gerber A., Bartov D., Granovsky A.B. Anomalous Hall effect in (Co₄₁Fe₃₉B₂₀)_x(Al–O)_{100-x} nanocomposites. *Pis 'ma v Zhurnal eksperimental 'noi i teoreticheskoi fiziki.* 2013;97(7–8):544–548 (in Russ.).]
- Manoharan S.S., Elefant D., Reiss G., Goodenough J.B. Extrinsic giant magne-toresistance in chromium (IV) oxide, CrO₂.
 Appl. Phys. Lett. 1998;72(8):984–986. https://doi.org/10.1063/1.120616

Об авторах

Яшин Максим Михайлович, к.ф.-м.н., доцент, кафедра наноэлектроники, Институт перспективных технологий и индустриального программирования, ФГБОУ ВО «МИРЭА – Российский технологический университет» (119454, Россия, Москва, пр-т Вернадского, д. 78). E-mail: yashin@mirea.ru. ResearcherID G-6809-2017, Scopus Author ID 57210607470, SPIN-код РИНЦ 2438-6135, https://orcid.org/0000-0001-8022-9355

Рябухин Виталий Евгеньевич, магистрант, Институт перспективных технологий и индустриального программирования, ФГБОУ ВО «МИРЭА – Российский технологический университет» (119454, Россия, Москва, пр-т Вернадского, д. 78). E-mail: vitas900@gmail.com. https://orcid.org/0009-0001-0421-4845

Юрасов Алексей Николаевич, д.ф.-м.н., профессор, профессор кафедры наноэлектроники, Институт перспективных технологий и индустриального программирования, ФГБОУ ВО «МИРЭА – Российский технологический университет» (119454, Россия, Москва, пр-т Вернадского, д. 78). E-mail: alexey_yurasov@mail.ru. ResearcherID M-3113-2016, Scopus Author ID 6602974416, SPIN-код РИНЦ 4259-8885, https://orcid.org/0000-0002-9104-3529

About the authors

Maxim M. Yashin, Cand. Sci. (Phys.–Math.), Associate Professor, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming, MIREA – Russian Technological University (78, Vernadskogo pr., Moscow, 119454 Russia). E-mail: yashin@mirea.ru. ResearcherID G-6809-2017, Scopus Author ID 57210607470, RSCI SPIN-code 2438-6135, https://orcid.org/0000-0001-8022-9355

Vitaly E. Ryabukhin, Student, Institute for Advanced Technologies and Industrial Programming, MIREA – Russian Technological University (78, Vernadskogo pr., Moscow, 119454 Russia). E-mail: vitas900@gmail.com. https://orcid.org/0009-0001-0421-4845

Alexey N. Yurasov, Dr. Sci. (Phys.-Math.), Professor, Department of Nanoelectronics, Institute for Advanced Technologies and Industrial Programming, MIREA – Russian Technological University (78, Vernadskogo pr., Moscow, 119454 Russia). E-mail: alexey_yurasov@mail.ru, ResearcherlD M-3113-2016, Scopus Author ID 6602974416, RSCI SPIN-code 4259-8885, https://orcid.org/0000-0002-9104-3529