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Abstract
Objectives. Much of the research in deep learning has focused on studying mappings between finite-dimensional 
spaces. While hydrodynamic processes of gas filtration in underground storage facilities can be described by partial 
differential equations (PDE), the requirement to study the mappings between functional spaces of infinite dimension 
distinguishes this problem from those solved using traditional mapping approaches. One of the most promising 
approaches involves the construction of neural operators, i.e., a generalization of neural networks to approximate 
mappings between functional spaces. The purpose of the work is to develop a neural operator to speed up calculations 
involved in hydrodynamic modeling of underground gas storages (UGS) to an acceptable degree of accuracy.
Methods. In this work, a modified Fourier neural operator was built and trained for hydrodynamic modeling of gas 
filtration processes in underground gas storages.
Results. The described method is shown to be capable of successful application to problems of three-dimensional 
gas filtration in a Cartesian coordinate system at objects with many wells. Despite the use of the fast Fourier transform 
algorithm in the architecture, the developed model is also effective for modeling objects having a nonuniform grid 
and complex geometry. As demonstrated not only on the test set, but also on artificially generated scenarios with 
significant changes made to the structure of the modeled object, the neural operator does not require a large training 
dataset size to achieve high accuracy of approximation of PDE solutions. A trained neural operator can simulate 
a given scenario in a fraction of a second, which is at least 106 times faster than a traditional numerical simulator.
Conclusions. The constructed and trained neural operator demonstrated efficient hydrodynamic modeling 
of underground gas storages. The resulting algorithm reproduces adequate solutions even in the case of significant 
changes in the modeled object that had not occurred during the training process. The model can be recommended 
for use in planning and decision-making purposes regarding various aspects of UGS operation, such as optimal 
control of gas wells, pressure control, and management of gas reserves.
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НАУЧНАЯ СТАТЬЯ
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Резюме 
Цели. Значительная часть исследований в области глубокого обучения сосредоточена на изучении отобра-
жений между конечномерными пространствами. Гидродинамические процессы фильтрации газа в подзем-
ных хранилищах, описываемые дифференциальными уравнениями в частных производных (ДУЧП), требуют 
изучения отображений между функциональными пространствами бесконечной размерности, что отличает 
данную задачу от традиционных. Одним из перспективных подходов является построение нейронных опера-
торов – обобщение нейронных сетей для аппроксимации отображений между функциональными простран-
ствами. Цель работы – создание нейронного оператора для ускорения расчетов гидродинамического моде-
лирования подземных хранилищ газа (ПХГ) при допустимых потерях точности.
Методы. В работе построен и обучен модифицированный нейронный оператор Фурье для гидродинамиче-
ского моделирования процессов фильтрации газа в ПХГ. 
Результаты. Показано, что данный метод может быть успешно применен для задач трехмерной фильтрации 
газа в декартовой системе координат на объектах с множеством скважин. Разработанная модель обеспечи-
вает высокое качество при моделировании объектов с неравномерной сеткой дискретизации и сложной гео-
метрией, несмотря на использование в архитектуре алгоритма быстрого преобразования Фурье. При этом 
нейронному оператору не требуется большой размер обучающей выборки для достижения высокой точно-
сти аппроксимации решений ДУЧП, что демонстрируется не только на тестовой выборке, но и на искусствен-
но сгенерированных сценариях с внесением существенных изменений в структуру моделируемого объекта. 
Обученный нейронный оператор осуществляет моделирование заданного сценария за доли секунды, что, 
по меньшей мере, в 106 раз быстрее, чем традиционный численный симулятор. 
Выводы. Построенный и обученный нейронный оператор показал хорошую эффективность в задаче гидродина-
мического моделирования ПХГ. Полученный алгоритм воспроизводит адекватные решения даже в случае суще-
ственных изменений в моделируемом объекте, которых не было в процессе обучения. Все это делает возможным 
применение данной модели в задачах планирования и принятия решений в отношении различных аспектов экс-
плуатации ПХГ, таких как оптимальное использование скважин, контроль давления и управление запасами газа.
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INTRODUCTION

Underground gas storage facilities (UGS) are 
technological complexes designed for gas injection, 
storage and withdrawal. They typically comprise 
the following functional components: aboveground 
engineering and technical facilities; a subsurface area 
limited by a mining allotment; a gas storage facility; 
control reservoirs; a gas buffer volume; a stock of wells 
for various purposes. Hydrodynamic modeling of UGS 
reservoirs, which is required to improve the accuracy 
and reliability of predicting UGS behavior, represents 
an integral part of the planning and decision-making 
processes for various aspects of UGS operation, such 
as optimal well utilization, pressure control, and gas 
reserve management.

Simplified balance models and more accurate 
numerical hydrodynamic models (HDMs) can be used 
in modeling of filtration processes of underground gas 
storage. Balance models are typically used where there is 
a lack of sufficient initial data to build three-dimensional 
numerical models or limited computing power. Such 
models solve the reservoir-filtration equation using 
simplified dependencies without considering complex 
geological and hydrodynamic processes that can have 
a significant impact on the behavior of UGS. Modern 
hydrodynamic simulators for numerical modeling of 
gas filtration processes are used to obtain more detailed 
information on the distribution of parameters in UGS 
reservoir beds and assess the impact of various factors 
on the processes of underground gas storage. However, 
the use of the finite volume method to approximate the 
system of differential equations in space, as well as an 
implicit scheme for time approximation for modeling, 
can be a computationally expensive procedure.

At present, numerical HDMs are mainly used to 
solve the problems of hydrodynamic modeling of UGS 
facilities. Due to the possibility of adapting such models 
to the accumulated history of field development (in the 
case of UGS in depleted fields) and the actual history 
of UGS operation, the modeling and model adaptation 

horizon can exceed 60 years. Moreover, taking into 
account the considerable amount of geological and field 
data supplied to the HDM as input data (geophysical 
survey results, pressure measurements, gas flow 
rates, etc.), the time of a single calculation can reach 
several hours.

Thus, the speed of calculations is one of the 
determining factors affecting managerial decisions 
related to the distribution of gas injection/withdrawal by 
wells and by area. One of the most promising approaches 
for accelerating hydrodynamic calculations involves the 
use of contemporary deep learning methods.

A substantial part of works in the field of deep 
learning is devoted to the construction of mappings 
between finite-dimensional (e.g., Euclidean) 
spaces [1, 2]. However, the use of partial differential 
equations (PDE) to describe physical processes of gas 
filtration in UGS distinguishes this problem due to the 
requirement to learn mappings between function spaces 
of infinite dimensionality [3].

According to the universal approximation 
theorem [4, 5], a fully connected network with a sufficient 
number of parameters can approximate any continuous 
function defined on a compact set to a predetermined 
accuracy. In [6–8], theoretical possibilities for 
approximating nonlinear mappings between function 
spaces are demonstrated. In addition, [9] provides 
estimates of the complexity bounds of the approximation 
error of neural networks, relating the number of model 
parameters and the dimensionality of the problem to the 
value of the approximation error.

However, the theoretical possibility to approximate 
mappings between infinite-dimensional spaces does 
not imply information on how to do it efficiently in 
practice. It is known that existing neural network 
architectures vary in terms of their performance when 
solving specific problems. For example, the same 
fully connected networks show significantly lower 
quality in image processing compared to the widely 
used convolutional architectures [2]. In order to further 
investigate the issue of effective training of neural 
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networks, [10] decomposes the overall model error into 
three components: approximation error, optimization 
error, and generalization error. The approximation error 
depends on the number of network parameters and the 
dimensionality of the problem, while the optimization 
error is related to the loss function, and the generalization 
error depends on the training sample size [11].

One of the important points in generalizing the 
dependencies described by the PDE using neural 
networks is the problem of dimensionality (“curse of 
dimensionality”) [12, 13], especially when modeling 
objects having complex UGS geometry or equations 
with multidimensional parameter spaces (the basic gas 
filtration equation) [3]. In order to generalize the basic 
dependencies and relations, deep learning models 
require a sufficiently large training sample size. 
According to [11], the upper bound on the generalization 

error is: gen
1 ,E
N

 where N is the number of training 

samples. Consequently, to obtain a relative generalization 
error of 1%, a sample size of O(104) is required.

In the case of modeling hydrodynamic processes 
in reservoir systems, obtaining a data set of similar 
size can be a difficult task, since the data set is formed 
from calculations on a numerical simulator, representing 
a computationally expensive procedure. Consequently, 
when taking into account the above features, the 
development of neural network architecture for the 
effective solution of problems of this type becomes 
a nontrivial and relevant issue.

Over the last few years, deep learning has actively 
penetrated the field of scientific computing to become 
a new paradigm.1, 2 Many novel methods have emerged 
to offer faster alternatives to numerical simulation.

Of course, there are works based on traditional 
deep learning approaches in the form of constructing 
finite-dimensional operators, which use the results of 
numerical simulations as a training set. For example, 
convolutional-, recurrent- and generative-adversarial 
architectures for solving fluid dynamics problems are 
investigated in [14–16]. However, due to their failure 
to use knowledge about the structure of the simulated 
dependencies, the presented methods are demanding 
on the object geometry and discretization grid, thus 
requiring a large amount of data.

A group of methods [17–19] belongs to a specialized 
class of algorithms known as physically informed 
neural networks. While this approach is also based on 

1 Lavin A., Krakauer D., Zenil H., et al. Simulation 
Intelligence: Towards a New Generation of Scientific Methods. 
2022. http://arxiv.org/abs/2112.03235. Accessed April 25, 2023.

2 Cuomo S., di Cola V.S., Giampaolo F., et al. Scientific 
Machine Learning through Physics-Informed Neural Networks: 
Where we are and What’s next. 2022. http://arxiv.org/
abs/2201.05624. Accessed April 25, 2023.

finite-dimensional mappings, it incorporates the PDE 
directly into the algorithm’s error function using the 
automatic differentiation mechanism [20]. In this way, 
physics is taken into account in the learning process 
as the model seeks to minimize the discrepancies 
between the left and right parts of the equation, 
representing initial and boundary conditions. However, 
the main disadvantage of this approach is its limitation 
to approximate a particular realization of the PDE. 
Consequently, physically informed neural networks 
do not provide a significant speed advantage relative 
to traditional numerical methods for many applied 
problems.

An alternative and relatively new approach is to train 
neural operators, which represent mappings between 
function spaces [21–23]. Since trained neural operators 
can approximate any nonlinear continuous operators, 
do not depend on the sampling grid, and require only 
a single training, they can be trained and evaluated on 
different sampling grids and PDE implementations. 
These methods demonstrate better efficiency when 
approximating PDEs in comparison with other existing 
approaches based on deep learning, including for 
hydrodynamic modeling problems. 

Operator learning in spaces of infinite dimensionality 
is currently an active area of research. Work is ongoing to 
improve the efficiency and applicability of this approach 
in various applications.

1. TASK STATEMENT

Mathematical model of gas filtration process

The present work considers the process of 
hydrodynamic modeling of porous-type UGS facilities. 
For such objects, various parameters describing gas 
motion in porous medium (filtration) have a strong 
time dependence [3]. Such processes are called 
unsteady (nonstationary).

The basic equation of three-dimensional unsteady 
single-phase filtration of a compressible fluid (gas) in 
a porous medium is obtained by substituting the law of 
conservation of momentum (Darcy’s law of filtration) 
into the law of conservation of mass [24]: 

 
g g g g

bulk sc
gsc

g g sc
,

   ∂ ∂ ∂ ∂   ∆ + ∆ +
   ∂ µ ∂ ∂ µ ∂   

  φ∂ ∂ ∂   + ∆ = −  ∂ µ ∂ ∂   

y yx x

z z

A kA k p px y
x B x y B y

V TA k p pz q
z B z p t Z

 (1)

where p is pressure; qgsc is the gas flow rate under 

standard conditions; sc
g

sc
=

p TZ
B

T p
 is the gas phase 
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volume coefficient; Z is the gas supercompressibility 
coefficient; μg is the gas viscosity; Tsc is the temperature 
under standard conditions; psc is the pressure under 
standard conditions; Vbulk is the rock volume; ϕ is 
porosity; k is permeability; A is the cross-sectional area 
of rock perpendicular to the filtration direction; 
Δx, Δy, Δz are length, width, and height of rock 
volume (final volume), respectively. 

The PDE (1) is nonlinear due to the dependence of 
μg, Bg, and Z on pressure and is similar to the diffusion 
equation, however, by its dynamic characteristics the flow 
described by this relation is not diffusion but filtration flow. 

Neural operator training

The purpose of the present work is to approximate 
the gas filtration equation in UGS (1) by constructing 
a neural operator that maps between two infinite-
dimensional spaces from a finite set of pairs of pairs of 
initial, boundary conditions, and PDE solutions.

Let us fix the spatiotemporal  dimension ∈d  and 
denote by D ⊂ d  the area in .

d  Then we can consider 
a mapping that is inherently an operator of the solution 
of PDE:

 
: A(D; ) U(D; ),

: ( ),
→

→ =
 

a ud dG
a u G a

 (2)

A(D; )∈ 

ada  is the function of the input data of the 
type : D ;→ 

ada  U(D; )∈ 

udu  is the function of the 
output data of the type : D .→ 

udu  A(D; )

ad  and 
U(D; )

ud  are Banach spaces.
In order to train the operator, it is necessary to 

assume a finite set of pairs of initial, boundary conditions 
and solutions of PDE 1{ , } ,=

N
j j ja u  where aj ∼ μ (μ is 

a probability measure) is a sequence of probability 
measures defined on A and uj = G(aj). These pairs are 
obtained from the HDM of the current UGS, which uses 
a finite volume method to approximate the system of 
differential equations in space and an implicit scheme to 
approximate in time. Thus, the training of the neural 
operator can be formulated as follows. The input data 
generated by the numerical simulator is essentially the 
result of a nonlinear mapping satisfying the gas filtration 
equation: G(aj) = uj. Consequently, it is possible to 
construct a neural operator *θ

N  by selecting the 
parameters θ ∊ Θ in such a way as to approximate the 
initial mapping * .

θ ≈GN  Then the learning process, 
which can be reduced to the problem of minimizing the 
loss function C: U × U → ℝ, has the following form:

 min [ ( ( ), ( ))],µ θθ aE C N a G a  (3)

where Ea~μ is the mathematical expectation.

2. CONSTRUCTION  
OF A NEURAL OPERATOR MODEL

In accordance with the problem statement, a neural 
operator should be trained to approximate the solution 
of the gas filtration PDE in UGS. When developing such 
methods, it is convenient to adhere to the following 
sequence of steps in the model architecture [23]:

1.  P is the operator of transformation of input data into 
the hidden space of higher dimensionality;

2. Iterative application of the kernel of the integral 
operator L;

3.  Q is the projection operator from the hidden space 
to the initial output space.
Thus, the structure of the neural operator has the 

form (4):

 N(a) = Q ∘ LL ∘ LL−1 ∘ ... ∘ L1 ∘ P(a), (4)

where the given depth of layers is , : A(D; ) U(D; ), ,∈ → ≥  

a vd d
v aL P d d 

, : A(D; ) U(D; ), ,∈ → ≥  

a vd d
v aL P d d  : U(D; ) U(D; ).→ 

v ud dQ
By analogy with classical finite-dimensional neural 

networks, L1, …, LL are nonlinear layers of the operator, 
: U(D; ) U(D; ), ( ),→ → 

v ud d
l lL v L v  which can be 

written as:

 Ll(v)(x) = σ(Wlv(x) + (Κ(a; θl)v)(x)), ∀x ∊ D, (5)

where σ is the activation function, Wl is the linear 
transformation, : A (U(D; ), U(D; )).Κ ×Θ→  

v vd dL
Operator K(a, θl) [22] is an integral operator of the 

form:

 
D

( ( , ) )( )

( , , ( ), ( )) ( ) , D.θ

Κ θ =

= κ ∀ ∈∫
la v x

x y a x a y v y dy x  (6)

The kernel κθ, which is a neural network with 
parameters θ ∊ Θ, can have various structures. Different 
kinds of neural operator are derived from this, for 
example, graph neural operators (GNO) and multipole 
graph neural operators (MGNO) [22], as well as low-
rank neural operators (LNO) and Fourier neural 
operators (FNO).

At present, one of the promising methods for 
approximating solutions of filtration equations is FNO, 
which is used to parameterize the kernel of the integral 
operator in Fourier space [25]. This method demonstrates 
better efficiency in fluid filtration problems in porous media 
as compared to traditional neural network algorithms 
and other operator architectures (GNO, MGNO, LNO, 
DeepONet) [23]. At the same time, [26] shows, using the 
example of the approximation of the transport equation, 
that the complexity of FNO grows logarithmically 
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to achieve a given error; this contrasts with the alternative 
DeepONet architecture [21], which grows quadratically.

The Fourier neural operator [25] belongs to the class 
of neural operators in which the kernel can be written as 
a convolution:

 
D

( ( , ) )( ) ( ) ( ) , D.θΚ θ = κ − ∀ ∈∫la v x x y v y dy x  (7)

In order to parameterize the kernel efficiently 
according to the convolution theorem, this method 
considers the image v in Fourier space using the 
fast Fourier transform F and the inverse Fourier 
transform F−1:

 1( ( ) )( ) ( ( ) ( )( ))( ), D,−
θΚ θ = ⋅ ∀ ∈v x F R k F v k x x  (8)

where Rθ(k) = F(κθ)(k) is the matrix of Fourier transform 
coefficients from κθ.

Thus, the layers of the Fourier operator will have 
the form:

 1( )( ) ( ( ) ( ( ) ( )( ))( )).−= σ + ⋅l l lL v x W v x F R k F v k x  (9)

The key difference between (9) and the traditional 
neural network architecture is the direct definition of all 
operations in feature space, which obviates a dependence 
on the discretization of the data.

We have developed a method for hydrodynamic 
modeling of UGS, consisting in a modified Fourier neural 
operator in which the layers of the neural operator include 

a convolution neural network U-Net operator to enhance 
expressiveness by processing high-frequency information 
that is not captured by the Fourier basis3. Such an 
algorithm involves the following three steps (Fig. 1):

1. Transformation of input data a(x) into a hidden 
space of higher dimensionality 

0
( ( ));=lv P a x

2. Iterative application of Fourier layers and subsequent 
application of modified Fourier layers: 

0 0
... ... ,→ → → → →

L Ml l m mv v v v  where 
jlv  for 

0,=j L  and 
kmv  for 0, ;=k M

3. Projection 
Mmv  from the hidden space into the 

original exit space ( ) ( ( )).=
Mmz x Q v x  

The modified Fourier layer of the neural operator 
has the following form: 

 1
( ) ( ( ( ))

( )( ) ( )), D,
+

= σ +

+ + ∀ ∈
k k

k k

m m

m m

v x W v x

Kv x Uv x x
 (10) 

where W is a linear operator; 1( ) ( ( ))( )−= ⋅
k km mKv x F R F v x  

is the integral transformation operator; U is the operator of 
the U-Net convolutional neural network.

It is important to note that the neural Fourier operator 
is an infinite-dimensional operator capable of generating 
invariant solutions regardless of the sampling grid on 
training and test samples. However, by adding a U-Net 

3 Wen G., Li Z., Azizzadenesheli K., et al. U-FNO – An 
enhanced Fourier neural operator-based deep-learning model for 
multiphase flow. 2022. http://arxiv.org/abs/2109.03697. Accessed 
April 25, 2023.

(a)

(b)

а(х) P
Fourier 
layer l0

U-Fourier 
layer m0

U-Fourier layer

Fourier layer

U-Fourier 
layer mM

Q z(x)

v(x)

v(x)

F

F

R

R

F–1

F–1

W

W

U

+

+

σ

σ

Fourier 
layer lL

(c)

Fig. 1. (a) Model architecture: P and Q are fully connected layers, z(x) is the model output;  
(b) Fourier layer: R represents the parameterization in Fourier space, W is the linear displacement;  

(c) modified Fourier layer: U is the U-Net operator, other notations have the same meaning as in the Fourier layer



108

Russian Technological Journal. 2024;12(6):102–112

Daniil D. Sirota, 
et al.

Neural operators for hydrodynamic modeling  
of underground gas storage facilities

block, which inherently lacks the flexibility of training and 
testing at different sampling, the authors of the architecture 
sacrifice flexibility in favor of higher accuracy. This 
architecture is expected to provide acceptable accuracy 
even with a relatively small training sample.

Data configuration

In this work, the data from the HDM are used to 
form the dataset. The approximation period is chosen to 
be equal to the gas withdrawal season. The whole data 
set is formed from 70 different withdrawal scenarios 
with a time step of 10 days. The considered UGS has 
more than 100 active wells and a complex geometry.

The final dataset consists of 2850 input-output pairs. 
For training, 2250 images were allocated for the training 
sample and 300 each for the validation and test samples.

3. RESULTS

Relative error is used as a loss function
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| ||
−

=
y y

L y y
y

 (11)

since formation pressure in UGS in different periods has 
a different scale; ŷ is the value obtained from the model

During training, the initial learning rate coefficient, 
assumed to be 0.001, decreases gradually as the number 
of passed epochs increases. Training stops when the 
loss on the validation sample does not decrease any 
more (Fig. 2).

The quality of the trained model was evaluated on 
a test sample. Statistical parameters of model errors are 
as follows: mean = 0.006; standard deviation = 0.2.
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Fig. 2. Diagram of model error  
during the learning process

The trained model is able to reproduce the reservoir 
pressure dynamics for the period of sampling seasons 
to an acceptable degree of accuracy. Figure 3 shows 
the scatter diagram of normalized (scaled to the range 
from 0 to 1) formation pressure between the trained 
neural operator and the results of numerical simulations. 
The coefficient of determination R2 = 0.999.
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Fig. 3. Normalized reservoir pressure scatter diagram

Based on the scatter plot, it follows that the 
distribution generated by the neural operator on the 
test sample in each reservoir cell is very close to the 
distribution from the HDM.

A visualization of the comparison of simulation results 
of reservoir pressure field dynamics modeling by means 
of neural operator and HDM is presented in Figs. 4–6. 
The time step means the ordinal number of the ten-day 
period (decade) within the gas withdrawal season.

The trained neural operator demonstrated good 
performance on the test sample. Moreover, the obtained 
model calculates a given scenario in a fraction of 
a second, which is at least 106 times faster than 
a traditional numerical simulator.

In spite of the small number of PDE implementations 
in the training sample, we evaluated the generalization 
ability of the model on the example of reproducing the 
reservoir pressure dynamics in case of significant changes 
in the object itself involving variations in the number 
and location of wells. Since the use of the developed 
neural operator at this stage does not imply calculations 
or optimization of various well placement schemes, the 
scenario calculated on the operating HDM was taken as 
a reference scenario reproducing the situation with near-
zero withdrawals from UGS during the entire period. 
Then, all wells were removed, 11 new production wells 
were placed in reservoir cells where they had never been 
before, and the scenario of forced gas withdrawals through 
these wells was modeled. The results are shown in Fig. 7.
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Fig. 4. Visualization of reservoir pressure from HDM, U-FNO model  
and absolute error on test sample (time step 4/16)
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Fig. 5. Visualization of reservoir pressure from HDM, U-FNO model  
and absolute error on test sample (time step 10/16)
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Fig. 6. Visualization of reservoir pressure from HDM, U-FNO model  
and absolute error on test sample (time step 16/16)
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Fig. 7. Visualization of simulation results taking into account changes in well stock  
and visualization of formation properties (cells with placed wells are highlighted in color)
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The lower part of Fig. 7 depicts visualizations 
of discretized reservoir cell volumes, porosity and 
permeability. Based on the obtained results, we conclude 
that the model responds adequately to such significant 
changes: the reservoir pressure field in the near-wellbore 
space changes taking into account the distribution of 
formation properties.

CONCLUSIONS

The reported study demonstrates the possibility 
of successfully applying the modified neural Fourier 
operator not only to the problems of modeling gas 
filtration in a cylindrical coordinate system with a single 
well, but also to the problems of three-dimensional gas 
filtration in a Cartesian coordinate system on objects 
with multiple wells. In addition, despite the use of the 
fast Fourier transform algorithm in the architecture, the 

developed model provides high quality modeling of 
objects with non-uniform sampling grid and complex 
geometry.

At the same time, the neural operator does not need 
a large training sample size to achieve high accuracy of 
approximation of PDE solutions, which is demonstrated 
not only on the test sample, but also on artificially 
generated scenarios involving significant changes in the 
structure of the modeled object. Based on the experiments, 
the trained neural operator simulates a given scenario in 
a fraction of a second, which is at least 106 times faster 
than a traditional numerical simulator. This makes the 
model suitable for application in tasks of planning and 
decision-making with respect to various aspects of UGS 
operation, such as optimal well utilization, pressure 
control and gas reserves management.
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