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Abstract

Objectives. Much of the research in deep learning has focused on studying mappings between finite-dimensional
spaces. While hydrodynamic processes of gas filtration in underground storage facilities can be described by partial
differential equations (PDE), the requirement to study the mappings between functional spaces of infinite dimension
distinguishes this problem from those solved using traditional mapping approaches. One of the most promising
approaches involves the construction of neural operators, i.e., a generalization of neural networks to approximate
mappings between functional spaces. The purpose of the work is to develop a neural operator to speed up calculations
involved in hydrodynamic modeling of underground gas storages (UGS) to an acceptable degree of accuracy.
Methods. In this work, a modified Fourier neural operator was built and trained for hydrodynamic modeling of gas
filtration processes in underground gas storages.

Results. The described method is shown to be capable of successful application to problems of three-dimensional
gas filtration in a Cartesian coordinate system at objects with many wells. Despite the use of the fast Fourier transform
algorithm in the architecture, the developed model is also effective for modeling objects having a nonuniform grid
and complex geometry. As demonstrated not only on the test set, but also on artificially generated scenarios with
significant changes made to the structure of the modeled object, the neural operator does not require a large training
dataset size to achieve high accuracy of approximation of PDE solutions. A trained neural operator can simulate
a given scenario in a fraction of a second, which is at least 10° times faster than a traditional numerical simulator.
Conclusions. The constructed and trained neural operator demonstrated efficient hydrodynamic modeling
of underground gas storages. The resulting algorithm reproduces adequate solutions even in the case of significant
changes in the modeled object that had not occurred during the training process. The model can be recommended
for use in planning and decision-making purposes regarding various aspects of UGS operation, such as optimal
control of gas wells, pressure control, and management of gas reserves.
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Pe3iome

Llenu. 3HaunTenbHas 4acTb UccnenoBaHuin B 06nactum rnybokoro obyvyeHus cocpenoTodyeHa Ha 3ydyeHmm otobpa-
XEHUIM MeXay KOHEYHOMEPHbIMY MPOCTPaHCcTBaMu. 'mapoamHaMmmuyeckme npoueccol GunbTpaumm rasa B noa3em-
HbIX XpaHWUMLLAaXx, oncbiBaemble anddepeHumnanbHbIMU YyPaBHEHNSMUN B HaCTHbIX NPon3BoaHbix (AYYI), TpebyoT
N3y4YeHns 0TOBPaxXeHnit Mexay GyHKLMOHAIbHBIMU NMPOCTPaHCTBaMM GECKOHEYHOM pa3MepHOCTU, YTO OTINYaET
LAHHYI0 3a4a4y OT TPAAMUMOHHbIX. OAHMM N3 NePCAEKTUBHbIX MOAXOA0B SABASETCS MOCTPOEHNE HEMPOHHbIX ornepa-
TOPOB — 0606LLIEHNE HENPOHHBIX CETEN NS annpokcuMaumm oTobpaxeHuin mexay GyHKLUMOoHaNbHBIMU NPOCTPaH-
cTBamu. Llenb paboTbl — co3aaHMe HEMPOHHOrO ornepartopa A1 YCKOPEeHUst pacyeToB r’MApPOANHAMNYECKOro Moae-
NMpoBaHMa NoA3eMHbIX xpaHunuiy, rasa (MXr) npy 4onycTUMbIX NOTEPSIX TOYHOCTM.

MeToabl. B paboTe nocTpoeH n 06y4eH MOANDULNPOBAHHbI HENPOHHBIN onepaTtop Pypbe Ana ruapoaHamMmye-
CKOro MoAenMpoBaHus npoueccos punbtpaumnm rasa B MNXr.

PesynbTaTthl. [10ka3aHo, 4TO AaHHbIN MeTo4 MOXET ObiTb YCMNELLHO NPUMEHEH OJ15 3a4a4 TPeXMepHo dunbTpaumm
rasa B AeKapTOBOWM CUCTEME KOOpAMHAT Ha 0O6beKTax C MHOXECTBOM CKBaxknH. PaspaboTaHHas Moaesnb obecrneymn-
BaeT BbICOKOE Ka4eCTBO Npu MOAENMPOBaHNN 0ObEKTOB C HEPABHOMEPHOW CETKOM ANCKPETN3ALMM 1 CNOXHOW reo-
METpMEli, HECMOTPS Ha UCMNOJIb30BaHNE B apXUTEKTYPE anropmutma 6bicTporo npeobpasoBaHus Pypbe. MNpn aTOM
HEMNPOHHOMY ornepaTopy He TpebyeTcs 60sbLLOK pasmep 06y4yatoLlet BbIOOPKM St AOCTUXEHUSI BbICOKOWM TOYHO-
CTW annpokcumMaLumm pewennin IYHIl, 4To 4EMOHCTPMPYETCS HE TOJIbKO HA TECTOBOM BbIBOPKE, HO 1 HA UCKYCCTBEH-
HO CreHEePUPOBAHHbIX CLLEHAPUSIX C BHECEHNEM CYLLIECTBEHHbIX USMEHEHWI B CTPYKTYPY MOAENNPYEMOro 06bekTa.
OOy4eHHbI HEeMPOHHbI ornepaTop OCYLLECTBASeT MOAENMPOBaHMe 3a4aHHOro CLEeHapus 3a 40N CeKyHAbl, YTO,
no MeHbLueli Mepe, B 108 pas 6uicTpee, YeM TPaAMLIMOHHLIN YUCAEHHbIV CUMYNSTOP.

BbiBoAbI. [10CTPOEHHDIN 1 0O6YHEHHbIV HENPOHHbI ONepaTop nokasasn XxopoLuyo 3bGeKTMBHOCTL B 3a4a4e rmapoamHa-
Mmyeckoro mogenmposanus MNXI. MNonyyYeHHbI anropyuTM BOCAPOM3BOAUT afeKBaTHbIE PELLEHVS OaXe B ClyyHae CyLe-
CTBEHHbIX UBMEHEHWIN B MOAENMPYEMOM 0OBEKTE, KOTOPLIX HE ObISNO B NPoLLecce 00y4eHVs. Bce 3To enaeT BO3MOXHbIM
NPUMEHEHME JAHHON MOAENM B 3a4a4ax NMIaHNPOBAHUS N MPUHSATUS PELLEHNIA B OTHOLLEHUM Pa3fINYHbIX aCNEKTOB 9KC-
nnyataumm NXI, Taknx Kak ONnTMManbHOE MCMOJIb30BaHME CKBaXKWH, KOHTPOb AABAEHWS 1 yIpaBieHre 3anacamm rasa.
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npOSpa‘IHOCTb d)MHaHCOBOVI AedaTesibHOCTuU: ABTOpr HEe NMetoT d)VIHaHCOBOI7I 3anMHTEepPeCcoBaHHOCTW B npeacTaB/1ieH-

HbIX MaTepunasiax nin MetTogax.

ABTOpPbI 329BNSAOT 06 OTCYTCTBMM KOHMIMKTA MHTEPECOB.

INTRODUCTION

Underground gas storage facilities (UGS) are
technological complexes designed for gas injection,
storage and withdrawal. They typically comprise
the following functional components: aboveground
engineering and technical facilities; a subsurface area
limited by a mining allotment; a gas storage facility;
control reservoirs; a gas buffer volume; a stock of wells
for various purposes. Hydrodynamic modeling of UGS
reservoirs, which is required to improve the accuracy
and reliability of predicting UGS behavior, represents
an integral part of the planning and decision-making
processes for various aspects of UGS operation, such
as optimal well utilization, pressure control, and gas
reserve management.

Simplified balance models and more accurate
numerical hydrodynamic models (HDMs) can be used
in modeling of filtration processes of underground gas
storage. Balance models are typically used where there is
a lack of sufficient initial data to build three-dimensional
numerical models or limited computing power. Such
models solve the reservoir-filtration equation using
simplified dependencies without considering complex
geological and hydrodynamic processes that can have
a significant impact on the behavior of UGS. Modern
hydrodynamic simulators for numerical modeling of
gas filtration processes are used to obtain more detailed
information on the distribution of parameters in UGS
reservoir beds and assess the impact of various factors
on the processes of underground gas storage. However,
the use of the finite volume method to approximate the
system of differential equations in space, as well as an
implicit scheme for time approximation for modeling,
can be a computationally expensive procedure.

At present, numerical HDMs are mainly used to
solve the problems of hydrodynamic modeling of UGS
facilities. Due to the possibility of adapting such models
to the accumulated history of field development (in the
case of UGS in depleted fields) and the actual history
of UGS operation, the modeling and model adaptation

horizon can exceed 60 years. Moreover, taking into
account the considerable amount of geological and field
data supplied to the HDM as input data (geophysical
survey results, pressure measurements, gas flow
rates, etc.), the time of a single calculation can reach
several hours.

Thus, the speed of calculations is one of the
determining factors affecting managerial decisions
related to the distribution of gas injection/withdrawal by
wells and by area. One of the most promising approaches
for accelerating hydrodynamic calculations involves the
use of contemporary deep learning methods.

A substantial part of works in the field of deep
learning is devoted to the construction of mappings
between  finite-dimensional (e.g., Euclidean)
spaces [1, 2]. However, the use of partial differential
equations (PDE) to describe physical processes of gas
filtration in UGS distinguishes this problem due to the
requirement to learn mappings between function spaces
of infinite dimensionality [3].

According to the wuniversal approximation
theorem [4, 5], a fully connected network with a sufficient
number of parameters can approximate any continuous
function defined on a compact set to a predetermined
accuracy. In [6-8], theoretical possibilities for
approximating nonlinear mappings between function
spaces are demonstrated. In addition, [9] provides
estimates of the complexity bounds of the approximation
error of neural networks, relating the number of model
parameters and the dimensionality of the problem to the
value of the approximation error.

However, the theoretical possibility to approximate
mappings between infinite-dimensional spaces does
not imply information on how to do it efficiently in
practice. It is known that existing neural network
architectures vary in terms of their performance when
solving specific problems. For example, the same
fully connected networks show significantly lower
quality in image processing compared to the widely
used convolutional architectures [2]. In order to further
investigate the issue of effective training of neural
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networks, [10] decomposes the overall model error into
three components: approximation error, optimization
error, and generalization error. The approximation error
depends on the number of network parameters and the
dimensionality of the problem, while the optimization
error is related to the loss function, and the generalization
error depends on the training sample size [11].

One of the important points in generalizing the
dependencies described by the PDE using neural
networks is the problem of dimensionality (“curse of
dimensionality”’) [12, 13], especially when modeling
objects having complex UGS geometry or equations
with multidimensional parameter spaces (the basic gas
filtration equation) [3]. In order to generalize the basic
dependencies and relations, deep learning models
require a sufficiently large training sample size.
According to [11], the upper bound on the generalization

. 1 . -
error is: Egye ~ ﬁ, where N is the number of training

samples. Consequently, to obtain arelative generalization
error of 1%, a sample size of O(10%) is required.

In the case of modeling hydrodynamic processes
in reservoir systems, obtaining a data set of similar
size can be a difficult task, since the data set is formed
from calculations on a numerical simulator, representing
a computationally expensive procedure. Consequently,
when taking into account the above features, the
development of neural network architecture for the
effective solution of problems of this type becomes
a nontrivial and relevant issue.

Over the last few years, deep learning has actively
penetrated the field of scientific computing to become
a new paradigm.!> 2 Many novel methods have emerged
to offer faster alternatives to numerical simulation.

Of course, there are works based on traditional
deep learning approaches in the form of constructing
finite-dimensional operators, which use the results of
numerical simulations as a training set. For example,
convolutional-, recurrent- and generative-adversarial
architectures for solving fluid dynamics problems are
investigated in [14—-16]. However, due to their failure
to use knowledge about the structure of the simulated
dependencies, the presented methods are demanding
on the object geometry and discretization grid, thus
requiring a large amount of data.

A group of methods [17-19] belongs to a specialized
class of algorithms known as physically informed
neural networks. While this approach is also based on

I Lavin A., Krakauer D., Zenil H., et al. Simulation
Intelligence: Towards a New Generation of Scientific Methods.
2022. http://arxiv.org/abs/2112.03235. Accessed April 25, 2023.

2 Cuomo S., di Cola V.S., Giampaolo F., et al. Scientific
Machine Learning through Physics-Informed Neural Networks:
Where we are and What’s next. 2022. http://arxiv.org/
abs/2201.05624. Accessed April 25, 2023.

finite-dimensional mappings, it incorporates the PDE
directly into the algorithm’s error function using the
automatic differentiation mechanism [20]. In this way,
physics is taken into account in the learning process
as the model seeks to minimize the discrepancies
between the left and right parts of the equation,
representing initial and boundary conditions. However,
the main disadvantage of this approach is its limitation
to approximate a particular realization of the PDE.
Consequently, physically informed neural networks
do not provide a significant speed advantage relative
to traditional numerical methods for many applied
problems.

An alternative and relatively new approach is to train
neural operators, which represent mappings between
function spaces [21-23]. Since trained neural operators
can approximate any nonlinear continuous operators,
do not depend on the sampling grid, and require only
a single training, they can be trained and evaluated on
different sampling grids and PDE implementations.
These methods demonstrate better efficiency when
approximating PDEs in comparison with other existing
approaches based on deep learning, including for
hydrodynamic modeling problems.

Operator learning in spaces of infinite dimensionality
is currently an active area of research. Work is ongoing to
improve the efficiency and applicability of this approach
in various applications.

1. TASK STATEMENT
Mathematical model of gas filtration process

The present work considers the process of
hydrodynamic modeling of porous-type UGS facilities.
For such objects, various parameters describing gas
motion in porous medium (filtration) have a strong
time dependence [3]. Such processes are called
unsteady (nonstationary).

The basic equation of three-dimensional unsteady
single-phase filtration of a compressible fluid (gas) in
a porous medium is obtained by substituting the law of
conservation of momentum (Darcy’s law of filtration)
into the law of conservation of mass [24]:

i Axkx a_p +i _Aykya_p Ay+
ox| u,B, ox oy| n,B, oy
g8 g8 (1)
Lo Ak op |, Vo9 ﬁ(ﬁj_
0z | ugB, 0z p. o\z) &

where p is pressure; Dgsc is the gas flow rate under

pSC

standard conditions; Bg = is the gas phase

SC
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volume coefficient; Z is the gas supercompressibility
coefficient; Ky is the gas viscosity; T is the temperature
under standard conditions; p . is the pressure under
standard conditions; V. is the rock volume; ¢ is
porosity; k is permeability; 4 is the cross-sectional area
of rock perpendicular to the filtration direction;
Ax, Ay, Az are length, width, and height of rock
volume (final volume), respectively.

The PDE (1) is nonlinear due to the dependence of
My Bg, and Z on pressure and is similar to the diffusion
equation, however, by its dynamic characteristics the flow
described by this relation is not diffusion but filtration flow.

Neural operator training

The purpose of the present work is to approximate
the gas filtration equation in UGS (1) by constructing
a neural operator that maps between two infinite-
dimensional spaces from a finite set of pairs of pairs of
initial, boundary conditions, and PDE solutions.

Let us fix the spatiotemporal dimension d € N and

denote by D < R the area in RY. Then we can consider
a mapping that is inherently an operator of the solution

of PDE:
G:A(D;R%) - U(D; R%),
a—>u:=G(a),

2

ae A(D;Rda) is the function of the input data of the
type a:D — R% ; ue U(D; R% ) is the function of the
output data of the type u:D — R% . A(D;R%) and

U(D;Rdu ) are Banach spaces.

In order to train the operator, it is necessary to
assume a finite set of pairs of initial, boundary conditions
and solutions of PDE {a ol }?’Zl, where a; ~ | (nis
a probability measure) is a sequence of probability
measures defined on A and u, = G(a;,). These pairs are
obtained from the HDM of the current UGS, which uses
a finite volume method to approximate the system of
differential equations in space and an implicit scheme to
approximate in time. Thus, the training of the neural
operator can be formulated as follows. The input data
generated by the numerical simulator is essentially the
result of a nonlinear mapping satisfying the gas filtration
equation: G(aj) = u, Consequently, it is possible to
construct a neural operator N o* by selecting the
parameters 6 € ® in such a way as to approximate the

initial mapping Ne*z Then the learning process,

G
which can be reduced to the problem of minimizing the
loss function C: U x U = R, has the following form:

mein E,  [C(Ng(a),G(a))], (©))

where £ - is the mathematical expectation.

2. CONSTRUCTION
OF A NEURAL OPERATOR MODEL

In accordance with the problem statement, a neural
operator should be trained to approximate the solution
of the gas filtration PDE in UGS. When developing such
methods, it is convenient to adhere to the following
sequence of steps in the model architecture [23]:

1. Pis the operator of transformation of input data into
the hidden space of higher dimensionality;
2. Iterative application of the kernel of the integral

operator L;

3. Q is the projection operator from the hidden space
to the initial output space.

Thus, the structure of the neural operator has the
form (4):

N@)=QoL; oL, ;o..oL °Pa), 4)
where the given depth of layers is L € N, P: A(D; R% )—
—>UMD;RY),d, >d,, 0:UD;R%Y)— UD;R%u).

By analogy with classical finite-dimensional neural
networks, L, ..., L, are nonlinear layers of the operator,
L, : U(D;R%) — U(D;R% ), v — L, (v), which can be
written as:

L((x) =o(Wp(x) + (K(a; 8)v)(x)), Vx €D, (5)

where o is the activation function, W, is the linear
transformation, K : A x® — L(U(D; R%), U(D; R%)).

Operator K(a, 8,) [22] is an integral operator of the
form:

(K(a,0,)v)(x) =

= [ kp(x.yax).a)V()dy, ¥xeD. (O
D

The kernel x4, which is a neural network with
parameters 0 € ©, can have various structures. Different
kinds of neural operator are derived from this, for
example, graph neural operators (GNO) and multipole
graph neural operators (MGNO) [22], as well as low-
rank neural operators (LNO) and Fourier neural
operators (FNO).

At present, one of the promising methods for
approximating solutions of filtration equations is FNO,
which is used to parameterize the kernel of the integral
operator in Fourier space [25]. This method demonstrates
better efficiency in fluid filtration problems in porous media
as compared to traditional neural network algorithms
and other operator architectures (GNO, MGNO, LNO,
DeepONet) [23]. At the same time, [26] shows, using the
example of the approximation of the transport equation,
that the complexity of FNO grows logarithmically
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U-Fourier
layer mg

U-Fourier
layer m,,

(a)
Fourier Fourier
layer /, > > layer /, )

(b) ..,......A,‘.‘.......,.

U-Fourier layer

Fig. 1. (2) Model architecture: P and Q are fully connected layers, z(x) is the model output;
(b) Fourier layer: R represents the parameterization in Fourier space, Wis the linear displacement;
(c) modified Fourier layer: U is the U-Net operator, other notations have the same meaning as in the Fourier layer

to achieve a given error; this contrasts with the alternative
DeepONet architecture [21], which grows quadratically.

The Fourier neural operator [25] belongs to the class
of neural operators in which the kernel can be written as
a convolution:

(K(a,0,v)(x) = [ g (x = y)v(»)dy, VxeD.  (7)
D

In order to parameterize the kernel efficiently
according to the convolution theorem, this method
considers the image v in Fourier space using the
fast Fourier transform F and the inverse Fourier
transform F !

(K(OW)(x) = F~!(Ry (k) - F()(k))(x), Vx €D, (8)

where Ry(k) = F(kg)(k) is the matrix of Fourier transform
coefficients from K.

Thus, the layers of the Fourier operator will have
the form:

L)) = o(Wv(x) + FH (R (k) - FO)(K))(x)). (9)

The key difference between (9) and the traditional
neural network architecture is the direct definition of all
operations in feature space, which obviates a dependence
on the discretization of the data.

We have developed a method for hydrodynamic
modeling of UGS, consisting in a modified Fourier neural
operator in which the layers of the neural operator include

a convolution neural network U-Net operator to enhance
expressiveness by processing high-frequency information
that is not captured by the Fourier basis®. Such an
algorithm involves the following three steps (Fig. 1):
1. Transformation of input data a(x) into a hidden
space of higher dimensionality Vig = P(a(x));

2. Iterative application of Fourier layers and subsequent

application  of  modified Fourier layers:
Yo —>...—>vlL —>va —>...—>va, where v,j for

j=O,_L and Vo, for k=0,M;

3. Projection Viny, from the hidden space into the

original exit space z(x) = Q(va (x)).
The modified Fourier layer of the neural operator
has the following form:

Vit o1 (x)= G(W(mG (x))+

+ (Kvmk )(x)+ Uvmk (x)), VxeD, (10)

where J¥/is a linear operator; Kv,, (x)=FY(R-F (mG N(x)
is the integral transformation operator; U is the operator of
the U-Net convolutional neural network.

It is important to note that the neural Fourier operator
is an infinite-dimensional operator capable of generating
invariant solutions regardless of the sampling grid on
training and test samples. However, by adding a U-Net

3 Wen G., Li Z., Azizzadenesheli K., et al. U-FNO — An
enhanced Fourier neural operator-based deep-learning model for
multiphase flow. 2022. http://arxiv.org/abs/2109.03697. Accessed
April 25, 2023.
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block, which inherently lacks the flexibility of training and
testing at different sampling, the authors of the architecture
sacrifice flexibility in favor of higher accuracy. This
architecture is expected to provide acceptable accuracy
even with a relatively small training sample.

Data configuration

In this work, the data from the HDM are used to
form the dataset. The approximation period is chosen to
be equal to the gas withdrawal season. The whole data
set is formed from 70 different withdrawal scenarios
with a time step of 10 days. The considered UGS has
more than 100 active wells and a complex geometry.

The final dataset consists of 2850 input-output pairs.
For training, 2250 images were allocated for the training
sample and 300 each for the validation and test samples.

3. RESULTS

Relative error is used as a loss function

_ly=51l
|71,

L(y,) , (11)

since formation pressure in UGS in different periods has
a different scale; 7 is the value obtained from the model

During training, the initial learning rate coefficient,
assumed to be 0.001, decreases gradually as the number
of passed epochs increases. Training stops when the
loss on the validation sample does not decrease any
more (Fig. 2).

The quality of the trained model was evaluated on
a test sample. Statistical parameters of model errors are
as follows: mean = 0.006; standard deviation = 0.2.

0.10 1 Training data
2 Validation data

0.08

o
o
>

Loss function

o©
=)
K

0.02

0 20 40 60 80 100
Learning epoch

Fig. 2. Diagram of model error
during the learning process

The trained model is able to reproduce the reservoir
pressure dynamics for the period of sampling seasons
to an acceptable degree of accuracy. Figure 3 shows
the scatter diagram of normalized (scaled to the range
from 0 to 1) formation pressure between the trained
neural operator and the results of numerical simulations.
The coefficient of determination R = 0.999.

0.90

0.85

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90
Hydrodynamic model

Fig. 3. Normalized reservoir pressure scatter diagram

Based on the scatter plot, it follows that the
distribution generated by the neural operator on the
test sample in each reservoir cell is very close to the
distribution from the HDM.

Avisualization of the comparison of simulation results
of reservoir pressure field dynamics modeling by means
of neural operator and HDM is presented in Figs. 4-6.
The time step means the ordinal number of the ten-day
period (decade) within the gas withdrawal season.

The trained neural operator demonstrated good
performance on the test sample. Moreover, the obtained
model calculates a given scenario in a fraction of
a second, which is at least 10° times faster than
a traditional numerical simulator.

In spite of the small number of PDE implementations
in the training sample, we evaluated the generalization
ability of the model on the example of reproducing the
reservoir pressure dynamics in case of significant changes
in the object itself involving variations in the number
and location of wells. Since the use of the developed
neural operator at this stage does not imply calculations
or optimization of various well placement schemes, the
scenario calculated on the operating HDM was taken as
a reference scenario reproducing the situation with near-
zero withdrawals from UGS during the entire period.
Then, all wells were removed, 11 new production wells
were placed in reservoir cells where they had never been
before, and the scenario of forced gas withdrawals through
these wells was modeled. The results are shown in Fig. 7.
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Fig. 4. Visualization of reservoir pressure from HDM, U-FNO model
and absolute error on test sample (time step 4/16)
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Fig. 5. Visualization of reservoir pressure from HDM, U-FNO model
and absolute error on test sample (time step 10/16)
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Fig. 6. Visualization of reservoir pressure from HDM, U-FNO model
and absolute error on test sample (time step 16/16)
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Fig. 7. Visualization of simulation results taking into account changes in well stock
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The lower part of Fig. 7 depicts visualizations
of discretized reservoir cell volumes, porosity and
permeability. Based on the obtained results, we conclude
that the model responds adequately to such significant
changes: the reservoir pressure field in the near-wellbore
space changes taking into account the distribution of
formation properties.

CONCLUSIONS

The reported study demonstrates the possibility
of successfully applying the modified neural Fourier
operator not only to the problems of modeling gas
filtration in a cylindrical coordinate system with a single
well, but also to the problems of three-dimensional gas
filtration in a Cartesian coordinate system on objects
with multiple wells. In addition, despite the use of the
fast Fourier transform algorithm in the architecture, the

developed model provides high quality modeling of
objects with non-uniform sampling grid and complex
geometry.

At the same time, the neural operator does not need
a large training sample size to achieve high accuracy of
approximation of PDE solutions, which is demonstrated
not only on the test sample, but also on artificially
generated scenarios involving significant changes in the
structure of the modeled object. Based on the experiments,
the trained neural operator simulates a given scenario in
a fraction of a second, which is at least 10° times faster
than a traditional numerical simulator. This makes the
model suitable for application in tasks of planning and
decision-making with respect to various aspects of UGS
operation, such as optimal well utilization, pressure
control and gas reserves management.
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