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Abstract

Objectives. In recent decades, the relevance of research into the thermal response of solids to a temperature field
has increased in connection with the creation of powerful energy emitters and their use in technological operations.
There is a significant number of publications describing these processes using mathematical models of dynamic
or quasi-static thermoelasticity, mainly for most technically important materials that obey Hooke’s law. However,
at elevated temperatures and higher stress levels, the concept of an elastic body becomes insufficient: almost all
materials exhibit more or less clearly the phenomenon of viscous flow. The real body begins to exhibit elastic and
viscous properties and becomes viscoelastic. A rather complex problem arises: the development of dynamic (quasi-
static) thermoviscoelasticity within the framework of the corresponding mathematical models of classical applied
thermomechanics and mathematics. The purpose of the work is to consider the open problem of the theory
of thermal shock in terms of a generalized model of thermoviscoelasticity under the conditions of classical Fourier
phenomenology on the propagation of heat in solids. Three types of intense heating are considered: temperature,
thermal, and medium heating. Intensive cooling modes can be equally considered. The task is posed: to develop
model representations of dynamic (quasi-static) thermoviscoelasticity that allow accurate analytical solutions of the
corresponding boundary value problems on their basis. This direction is practically absent in the scientific literature.
Methods. Methods and theorems of operational calculus were used.

Results. Model representations of the thermal response of viscoelastic bodies using the proposed new compatibility
equation in displacements have been developed.

Conclusions. New integro-differential relations are proposed based on linear rheological models for the Maxwell
medium and the Kelvin medium, including both dynamic and quasi-static models for viscoelastic and elastic media,
generalizing the results of previous studies. The proposed constitutive relations of the new form are applicable
to describe the thermal response of quasi-elastic bodies of a canonical shape simultaneously in three coordinate
systems with a system-defining parameter, which makes it possible to identify the influence of the topology of the
region on the value of the corresponding temperature stresses.
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Peslome

Uenn. B nocnegHve gecatnneTtusi B CBA3W C CO34AHNEM MOLLHbIX U3JlydaTesien SHeprum n nx UCnoib3oBaHUEM
B TEXHOJIOMMYECKMX Onepaumnax BO3pOCia akTyasibHOCTb MCC/Ie40BaHUN TEPMUYECKOM peakLLMy TBEPAbIX TEJT HA TEM-
nepatypHoe nosne. CyllecTBYeT 3HAUNTENIbHOE KONIMYECTBO NyOGnvKauuni, OnmcbIBaoLLMX 3TU NPOLECChl MaTemMaTu-
4YeCcKUMU MOAENSIMUN ANHAMUYECKOW U KBa3MCTAaTMYECKON TEPMOYMNPYroCTy, B OCHOBHOM A1 60JIbLUMHCTBA TeX-
HUYECKN BaXHbIX MaTepuasoB, NoAYNHSAIOLMXCS 3akoHy 'yka. OgHako npu NoBbILEHHBLIX TemMrepatypax u 6onee
BbICOKOM YPOBHE HanpsiKeHUI NoHsaTre 06 ynpyrom Tese CTaHOBUTCS HEAOCTATOYHbIM: MOYTM Yy BCEX MaTepuasion
obHapyxuBaeTcst 605ee UM MeHee OTYETIINBO SIBJIEHME BSI3KOrO TeuyeHusl. PeanbHoe Teno HaunMHaeT NposiBiSTb
yrpyrve v BI3Kne CBOMCTBA Y CTAHOBUTCS BA3KOYNpPYrM. Bo3HMKaeT 40CTaTOYHO CrioxHas npobnema — pa3sutme
OMNHAMNYECKOM (KBa3MCTaTUY4ECKON) TEPMOBA3KOYNPYroCTU B PaMKax COOTBETCTBYIOLUMX MaTeMaTn4yeCckmnx Moze-
Nei Knaccu4eckom NpukiagHo TEpMOMEXaHUKM U MaTeMaTUKN. Lienb paboTbl — pacCMOTPETb OTKPLITYIO NPo6emMy
Teopun TENJIOBOIO yaapa B TEpMUHax 06006LLLEHHOM MOAENN TEPMOBSA3KOYMNPYroCTU B YCIIOBMSX KllacCU4eckom de-
HoMeHonorum Aypbe 0 pacnpocTpaHeHM TEMJIOTLI B TBEPAbIX Tenax. PaccMmaTpuBaloTcs TpU BUAA MHTEHCUBHOMO
Harpesa: TemrnepaTtypHbIii, TEMIOBOW, HAarpeB cpeaoi. B paBHO Mepe MOryT 6biTb PACCMOTPEHbI PEXMMbI UHTEH-
cuBHOro oxnaxaeHus. CtaButcs 3agada: paspaborarb MOAE/bHbIE NPEACTABIEHUS AMHAMUYECKON (KBa3ucTaTu-
4eCKOoM) TePMOBA3KOYNPYroCTy, AOMNYyCKaLWMe TOYHbIE aHaNIMTUYECKNE PEeLLEeHUS COOTBETCTBYIOLLMX KPaeBbIX 3a-
[lay Ha NX OCHOBE. YKa3aHHOe HarnpasJ/ieHNe B HaYy4YHOM nuTepaType npakTuieckn OTCYTCTBYET.

MeToabl. VIcnonb3oBaHbl METOAbI M TEOPEMbI ONEPALMOHHOIO NCHUCTIEHNS.

Pe3ynbTaTbl. Pa3BuTbl MOLESIbHbIE NPEACTAB/IEHNSA TEPMUYECKON peakLmn BA3KOYNPYrnx Tef C UCMNOoJIb30BaHUEM
npeasioXeHHOro HOBOIro YpaBHEHUSA COBMECTHOCTU B NEePEMELLEHNSAX.

BbiBoapl. MpeanoxeHbl HOBblE MHTErpPo-anddepeHUmnanbHble COOTHOLEHUSI HA 6ase NIMHEHbIX Pe0IorMYecKnx
mopenen aonga cpenbl Makceenna v cpenbl KenbBrHa, BKIOYaoLmMe OLAHOBPEMEHHO AMHAMMYECKME U KBa3ucTa-
TUYeckrne MoAeNnu OJis BA3KOYMNPYrix v ynpyrux cpen, obobuiaolme pesynbTathl NpeabiayLmnx ccnenoBaHuii.
MpennoxeHHble onpeaensoLme COOTHOLEHNA HOBON POPMbI MPUMEHUMBI /191 ONUCAHUA TEPMUYECKON peakLumm
KBa3Nyrnpyrux Tes KAHOHN4YEeCKOoM GOPMbl OLHOBPEMEHHO B TPEX CUCTEMAxX KOOPAMHAT C ONpeaeNisiowmM CUCTeMy
napameTpoM, HTO NO3BOISET BbISIBUTb BINSIHME TOMOMOrMM 06/1aCTU HA BENWMYMHY COOTBETCTBYIOLLMX TEMMNEPATyp-
HbIX HANPSXKEHWNI.

KnioueBble cnoea: TensioBo yaap, TePMOBSA3KOYNPYroCTb, 06006LLEHHbIE AMHAMUYECKME MOLOESN, aHAaNIUTUYEeCKne
peLleHns, TepMUYEcKme HanpsixkeHns
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Kaptawos 3.M. Pa3Butne MOAENbHbIX MNPEACTaBAEHU TEPMUYECKOM peakumMm BA3KO-
Russ. Technol. J. 2024;12(6):80-90. https://doi.org/10.32362/2500-

Mpo3payHocTb pUHAHCOBOIN AeATesIbHOCTU: ABTOP HE MMEET PMHAHCOBOW 3aMHTEPECOBAHHOCTU B NPEACTaB/EH-

HbIX MaTepunanax nin Metoaax.

ABTOp 3aaBnseT 06 OTCYTCTBUU KOHMIVKTA MHTEPECOB.

INTRODUCTION

The paper continues previous research [1, 2] into the
development of generalized local-equilibrium and local-
non-equilibrium heat transfer processes. Here, the open
problem of the thermal response of viscoelastic bodies to
heating of a massive body bounded internally by a flat
surface (elastic half-space in the Cartesian coordinate
system), a cylindrical surface (elastic space in the cylindrical
coordinate system with an internal cylindrical cavity), or
a spherical surface (elastic space in the spherical coordinate
system with an internal spherical cavity). The developed
approach based on integro-differential relations including
simultaneously dynamic and quasi-static models for
viscoelastic and elastic media generalizes the results of
previous studies. New model representations are based on
linear Maxwell and Kelvin rheological models, allowing
the impact of viscous flow in an elastic medium on
temperature elastic stresses to be distinctly traced. The
reported results open a new scientific direction in applied
thermomechanics and mathematics comprising a study of
the thermal response of viscoelastic bodies to intensive
heating (cooling) within the framework of dynamic and
quasi-static models. At the first stage, the research is carried
out under the conditions of the commonly used local
equilibrium heat transfer based on the traditional Fourier
phenomenology [3] in terms of the linear gradient relations
that relate heat flux density vector q(M, ) (¢ is time) with
thermal gradient 7(M,t):q(M,t)=—ArqradT (M 1),
where A is the thermal conductivity coefficient. Three
cases of intensive heating of boundary S of region
Q={M(x,y,z)e D=D+S, t>0} describing a real
solid are considered: thermal heating T(M,?) = T, (?),
MeS,t>0 (T, (t)> Ty T, is the initial temperature at
which the region is in unstressed and undeformed state);
thermal heating 0T (M,t)/on=~(1/Ly)qy(t),M €S,
t>0 (g,(t) is heat flux value, 7 = (ny,n,,n3) is external
normal to S and is the vector continuous at S); and heating
by medium 0T (M,t)/on :—h[T(M,t)—Tam],M es,
t>0 (where h — relative heat exchange coefficient;
T, — ambient temperature (7, (1) > 7). Within the
described approach, cases of abrupt cooling can also be
considered, as well as the effect of heat internal
sources (heat sinks).

DEFINING RELATIONS
OF DYNAMIC THERMOELASTICITY

Let GU(M,I), al.j(M,t), U,(M,t) be
components of the stress, strain, and displacement vector,
respectively, satisfying basic equations of (uncoupled)
thermoelasticity (in index notation) [1-6]:

tensor

o, (M, 0)+ F(M,t)=p*U;(M.1), (1

sl.j(M,t)=(1/2)[Ul.’j(M,t)+Uj’i(M,t)], )

GU.(M,t) = 2u8ij (M,t)+
+ [ ey (M, 0) = Bh+2w)aup (T(M, 1) - TO)]SI.]., A3)
MeD,t>0,

where p” is density; A, p are Lamé isothermal coefficients;
G is the shear modulus; A =2Gv/(1-2v); v is the
Poisson ratio, with 2G(1+v)=E, E is the Young’s
modulus; A is the linear thermal expansion coefficient,
8?/' is the Kronecker symbol, F(M, 1) are volumetric
force components; e(M, 1) = U, (M, t) = ¢,(M, ) is the
volumetric strain related to the sum of normal stresses
o(M,)=0,,(M,t),(n=x,y,z) described by the
following relation:

1-2v

e(M,f)= o(M.1)+3ar [T(M.)-T) ] (4)

Boundary conditions ch i (M,t)n ;= f;(M,1),
M e S, t>0 should be added to Egs. (1)—(4) on the part
of the surface where stresses are known and boundary
conditions U;(M,t) =¢,(M,t),M €S, t>0 on the part
of the surface where displacements are given. For
a partially bounded region, the condition of boundedness
of all functions included in (1)—(4) should be added. The
temperature function 7(M, ¢) included in (3) is derived
from the solution to the boundary value problem of
nonstationary thermal conductivity of the following
form:

Russian Technological Journal. 2024;12(6):80-90

82


https://doi.org/10.32362/2500-316X-2024-12-6-80-90
https://doi.org/10.32362/2500-316X-2024-12-6-80-90

Development of model representations of thermal reaction
viscoelastic bodies on the temperature field

Eduard M. Kartashov

aa—f =aAT(M,t)+(1/cp*) f(M,t),M €D, t >0,

T(M,0)|,.o=Ty-M €5, (5)

oT (M ,t¢
" %Jr Yo, T (M, 1) =y30(M,t),M €S, ¢ >0,

where a is thermal diffusivity; ¢ is heat capacity; v, v,,
and v, are coefficients under the boundary condition.

Relations (1)—(4) are general relations of dynamic
thermoelasticity that relate stress, strain, displacement,
and temperature. When passing to specific cases,
Eq. (1)—(4) should be transformed into the so-called
compatibility equations, either in stresses or in
displacements, and the corresponding problem of
dynamic thermoelasticity should be written for these
equations. For the case considered in the paper, the
impact of the boundary surface curvature of solid body on
the temperature and corresponding temperature stresses
should be taken into account. Here, a more convenient
mathematical model is the equation of compatibility in
displacements that simultaneously covers cylindrical,
spherical, and Cartesian coordinate systems only within
the framework of the generalized model involving
numerous practical applications.

Substituting right parts of (3) into (1) (without
volumetric forces) and then using (2) and (4), following
a number of long transforms we arrive at the following
three equations:

e 2
AU (M, 1) + e, */G)M
(-2v) o
_ 201+ v)aq O[T(M.0)- T} .
(1-2v) di —hY

which can be formally written as the following vector
equality:

AU(M H+—— grad[dlvU(M t)]
(1-2v)
. L O2UWM,t
—(p /G)# (6)
51(1 V) 6 grad[T(M,0)~Ty |, M €D, >0,
Note that during the reverse transition, the

appropriate components in vector entries in the left and
right parts of (6) should be equated.

We consider further practical cases of dynamic
thermoelasticity based on Eq. (6). In the first case, region
z>R,t>0is considered in Cartesian coordinates (x, y, z),
bounded by flat surface whose temperature state
is described by function Tz, #), (i = 1, 2, 3); thus,

U, = Uy =0, U,= U/[z, 1), and Eq. (6) has the following
form:

02U _(z1) 1 02U _(z,1) _
oz2 V2 or?
o[ T,( ev)v T | @
(z,t)—
=1+V(XT d 0 ,z>R, t>0.
1-v oz

}2G1
Here, v, = U(—;)) N +2p)/p* is the
p

velocity of the expansive wave (EW) propagation
in an elastic medium that is close to the speed of
sound.

The stress component c_(z, #) that interests us
is connected to the displacement by the following
relation:

o (z.0)= 2604-v)
(1-2v)

®)

1+v

ou
X { 622 _:(xT [Ti(z,t)—T()]}.

The temperature function satisfies three heating
conditions:

oT.  0°T,
—L=a—L,z>Rt>0,(i=12,3),
o oz?
T(z.0)|,g=Ty. 22 R,
T(2.0)| g =Ty £ > 0,
o
oz
LY

)

|.og=—(/%p)gg, t >0,

z=R =_h(T3 _Tam)’ 1>0,

|Tl.(z,t)| <w,z>R,t>0.

In the second case, region p > R, ¢ > 0 having
an internal spherical cavity is considered according
to spherical coordinates (p, ¢, 0) when heated under
central symmetry conditions 7, = T(p, #) so that
U(p =U, =0, Up = Up(p, t), and (6) is written in the
following form:

oU,(p,1) 2 0U,(p,1)
+ —_ —
> p  Op

2
2 10U, (p:0)
-5V )5 = (10)
p2 P 2 or2
o[ T.(p,0)- T,
:1+va I:l(p ) O:I,p>R,Z‘>0.

1-v T op
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In this case,

2G(1-v)
Gho(P:1) = o

{5Up(p,t) o1
x—2— "4

-—=U_(p,t)— 11
o U0 (1)

1+v

R [T:(p.0) - Toj}

aT.(p,t 0°T, or.
i(P )=a +g— ,P>R, >0,
ot opr p Op

T](p’t)‘p:R:Tama t> 0’
arz(p,w‘

o=/ Ap)gq. >0, (12)

o7, (p,t
(P )‘ Ts(P’Z)‘p R am} t>0,

|Tl.(p,t)| <oo,p=R,t>0.

p=R~ "~

In the third case, region p > R, ¢ > 0 with an
internal cylindrical cavity is considered in cylindrical
coordinates (7, @, z) under radial temperature conditions
T, = T(p, t) so that U<|> =U,=0,U,=U/(r, 1), and Eq. (6)
has the following form:

ouU (r,t
LD 1y oy
or? r or r2

B G S L/ GORe Y S
v2 or? 1-v T or ’

(A%

02U, (r,t) .

r>R,t>0.

Here,

o (rn)=22U" V){aU ), v ]

U ) —
(1-2v) or l—v r )
1+v

(14)
% [Ti(r,z)—T()]},

oT. o°T, 16
—L Ly — ,r>R, >0,
o r ar
T,(r,0)|,_o=Ty. 7 2 R,
L, 0)|,_g =Ty £ >0,
0T, (r,1)
or

r:R:_h[TS(F’tﬂr:R_TamJ’ >0,

|Tl.(r,t)| <o, r>R,t>0.

(15)

|,—r=—(1/ A1)y, t >0,

Ty (r,1)
or

It would be useful to simultaneously cover all
three cases in all three coordinate systems within the
framework of the generalized model, which could be
of practical significance in the theory of thermal shock.
For convenient recording of the generalized model,
the generalized coordinate p is introduced: p = z in
Cartesian coordinates, u = p in spherical coordinates,
and p =r in cylindrical coordinates. Here, U,= U“(u, 1),
Oy = Oy 1), T;= T, 1).

Then Egs. (7)—(15) for elastic body can be written in
the generalized form, as follows:

62Uu+2m+1 aU”—lU _L‘azUu_
ou? ow op M2 a2

[ [ ew (16)
[0 -T) ], n>R, >0,

B 1+v0c
1-v Tou

LC@mey 1

2G(1-v) | 90U,
(1-2v) 1-v) a7

1+v
—:O‘T [Ti(p,t)—TOJ}, pw>R,t>0,

L)) :a[ézT L 2m+l or,
ot on? n ou

T (1,0)] ;o= Ty 02 R,
Tl(u,t)‘u:R:Tam,t>0,
aTz(MJ)‘

J u>R,t>0,

18
wr=—(/ M)y, >0, 1%

8T3(u,t)
‘“ 2= h T3(u,t)‘u . am} >0,

I7:)

<o, u=R,t20.

Here,

z,z>R, m=—1/2 for Cartesian coordinates,

(19)

p=<p,p>R, m=1/2 for spherical coordinates,

r,r>R, m=0 for cylindrical coordinats.

In order to completely formulate the dynamic
problem for displacements in elastic region (in the latter
case, the boundary of the region is assumed stress free),
the initial and boundary conditions should be added:

oU (u,t)

Uu(uat) =0 |t 0 _O M>R (20)
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oUu,(Lt)  2m+1y 1
H’ Pyr—
[ (o) uU“(“’t)}

wr (21)

I+v
=0t [LO-Ty ] _g-t>0,

‘U“ (1,030, (1, t)‘ <oo,u=R, 120,  (22)

STRESS—-STRAIN RELATIONS
IN RHEOLOGICAL MODELS

Numerous studies on the thermal response of
solids have been carried out mainly for the majority
of technically important materials that obey Hooke’s
law. At relatively low temperature and stress levels, the
behavior of a wide class of materials is believed to be
in good agreement with the above-described theory of
thermoelasticity.

At higher temperatures and stress levels, the concept
of an elastic body becomes insufficient due to almost all
materials exhibiting more or less distinct viscous flow
phenomena. In this case, the behavior of a real body
is called viscoelastic since the body simultaneously
exhibits elastic and viscous properties. In order to
mathematically describe the inelastic behavior of
a body under given heating and stress conditions, the
stress—strain Eqs. (3) and (4) should be appropriately
generalized.

Rheological models that simultaneously account
for elastic deformation and viscous flow processes due
to the sufficient simplicity of the adopted stress—strain
relations permit a mathematical analysis of the behavior
of real bodies under different loading conditions. In this
connection, when designing structural elements exposed
to high temperatures, accounting for the rheological
effects becomes of great importance.

We write all necessary relations for the
rheological laws relating stresses cij(M, ¢) and strains
sij(M, 1), (i, j = x, y, z). For this, stress deviator sij(M, 7)
along with strain deviator el.j(M, t) are introduced by the
following relations:

s;(M, 1) = o, (M, 1) - c'(M, 1)§ (23)

l-]"

e (M, 1) =g,(M, 1)~ e (M, 1)8 (24)

l'j)

&3 B3
where ¢ and € are average normal stress and average
elongation:

6" (M,1)= %Zcﬁ (M,1), e(M,t)= %Zgﬁ (M, 1). (25)

Using these deviators, Egs. (3) and (4) can be written
in the following form:

$; (M, 1) =2Ge; (M 1), (26)
« =2y,
e (M,1) _—ZG(1+V)G M,t)+ o

+ap[T(M,0)-T, ]

These equations describe the behavior of a linear
elastic medium. Adding the summand expressing
Newton’s law of viscosity (series or parallel connection
of spring and viscous resistance) to Hooke’s law
relations, the resulting dependencies would yield the
Maxwell medium, as follows:

Os.(M,t) Oe..(M,t)
s, (M,)=2G——— (28)
ot TV ot
and the Kelvin medium, as follows:
ael.j (M, 1)
Sij(M’t) =2G el.j(M,t)+rrlx . (29

In this case, Eq. (27) remains unchanged. The
latter means that under hydrostatic compression or
tension, the body behaves as a fully elastic body. The
constant T, = n/G is referred to as the relaxation
time in (28) and the lag time in (29), while 1 is the
material viscosity. Certainly, an actual behavior of
materials is more complicated than in hypothetical
cases (28) and (29); however, when based on
applying the simplest models, the Maxwell scheme
can be used for metals at high temperatures, as
well as for polymers combining elastic deformation
and viscous flow, while the Kelvin scheme can be
used for materials with internal friction in studying
damped oscillations.

Note that at t; = 0 (n = ), Eq. (28) yields Hooke’s
medium, while at 7, = 0 (m = 0) in (29), Kelvin’s law
reduces to Eq. (26).

At thermal shock (instant heating or cooling of the
boundary surface), the stresses immediately change by
value A=|Ear (7,
these stresses remain unchanged, while in a Maxwell
medium, viscous flow begins, as a result of which the
stress continuously decreases to asymptotically
approach a zero value. In contrast, in the Kelvin
medium, the stress jump exceeds the appropriate elastic
value toward which this stress then approaches
asymptotically.

-T, )‘ [3]. In an elastic medium,
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NEW INTEGRAL RELATIONS
FOR DYNAMIC THERMOVISCOELASTICITY

Since stress—strain relations for viscoelastic
materials contain variable ¢ (time), the corresponding
mathematical models are nonstationary and therefore
dynamic. The above relations can be used to
describe the thermal response of canonically shaped
viscoelastic bodies (an infinite plate; a half-space
bounded by a flat surface; cylindrical and spherical
bodies, and etc.) under given heating (or cooling)
conditions as part of the corresponding boundary
value problem of nonstationary thermal conductivity.
For this purpose, the differential equation of dynamic
thermoviscoelasticity should be obtained at the initial
stage. We start considering this issue in Cartesian
coordinates for viscoelastic half-space z > [ (/ is left
boundary of the region) of temperature 7(z, ) whose
boundary is stress-free. In this case, U, = =U, = 0,
U,=U/(z 0,¢,.=¢,=0,e_=¢_, stresses ;=0 (z, 1)
forz—j,clj—Oforz;é], (i, =x,,2).

Then we have the following:

0s,,(z,1) +L 4G o, (z,1) ;

s__(z,t)= >0,
o o =0T (30)
52 (z0|_, =0,
oU _(z,t)
SZZ(Zat):Za—Zp
dc_(z,t) 0% (z,1) 1
Z = 2 z>1,t>0,
0z ot
. 2G(1+v)
G, =8, T0 =S5, +mazz o)
2G(1+v)
T -T,).

We find the solution to the Cauchy problem (30):

t
aZZ—ﬂjexp{—(t_T)}szz(z,r)dr. (33)
3Trlx 0

rlx

Then we find o__ from (32) and (33) and substitute
it into (31). As a result, the following relation for the
Maxwell medium is obtained:

U, 1 U, _(+w  LGEH-T]
22 it (1-v) T oz
(34)
L 20-2v) f (-1 |°U,(z 2
3Trlx(1 V) Trix oz*

In this case,

—v) oU
GZZ(ZJ):M._Z_
(1-2v) &z
t
4G t— oU _(z,t
- J.exp[—( T)} Za( )4 (35)
3Trlx() Trix z

2G(1+v)
(1-2v)

ap[T(z.0-T .

Using similar reasoning in the spherical coordinate
system (central symmetry 7, = T(p, t) for the viscoelastic
region p > R, t > 0, relations for the Maxwell medium

are obtained:

2 2
00, 2% 2, 1 %0
> p p p> P V2 o
o| T.(p,t)—T; _
ES [T:(p.0) o]+ 20-20) (36)
1-v op 3t (1-v)

) 82Up+2 6Up 2
> P

-—=U_(p,7) |d
R p<pr)J v

_2G(1-v) y
ou, 2y 1 (1+v)
p — — f—
ﬁ6p+kvpp 1o 10T ]= 67)

2 (t-1)
3Tr1x . p|: Trlx i|( ap p U (pz T)\] dT}

In cylindrical coordinates (radial flux 7, = T(r, 7))
for viscoelastic region » > R, t > 0, similar reasoning
produces the following:

o?U, 1 oU, 1
2 U -
o r or 27
2 o|T.(r,t)—T; -
) 21 K l;,:(nv)aT [0-T ] 20-20)  (38)
A Tt
_ ou
IeXp (t-7) +l. V_LUr(r,r) dr,
g Ty o2 r or i
2G(1—-v
=200
(1-2v)

(1+v)

ou
x{ ry Y -lU

o 1-v r 7

t
- 0
m;ij4}g_QM
3 Trix 0 Trix

ar[T(rnn-Ty |- (39)

U
r _%Ur(r,‘t)]d‘t}

(1-

or
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Thus, the generalized model of dynamic
thermoviscoelasticity can be written in coordinates (L, )
for all three coordinate systems simultaneously.

For the Maxwell medium:

PUy oty 1)
on? polon p ¥
2
_%,6 Uu:(”v)aT a[Ti(H”)*To]+ 2-2v) - (40)
Vi o2 (1-v) o 3t (1-v)
4 _ aU
XI“P{(I ﬂ} 2m+1[ lU(uﬂg
0 Tax | on? polon
_2G(1-v)
Gw(u,t)—mx
oU
y u+(2m+l)v.lU (l+v) T[T(HJ) T] (4D
o (d-v) ptoa-
4G (t—1) 2m+l
_ U, (w7)|d
3‘[’-rlx -([exp|: Trix :H: a“' 2 (u t)j| h
The specific coordinate system in Egs. (40) and (41)
is fixed by (19).
For the Kelvin medium:
62UH 2m+1 aUu_lU _L.azU“_
on? u ou w M) o
o| T:(n,t)—T, 2 _
ey OG0T 2ty (-2
1-v) ou 3 1-v
L0 52U 2m+1(Uy 1,
“or poloan p M|
260-v)
o (1) = 1-2v)
oU
m v 2m+1 1+v (43)
X{aqul—v. " Uu——aT[T(u,t) T]}
+4Grrlx_g aUll_sz"lU .
3 oalop  2u M

As in (41) above, the corresponding coordinate
system is defined by conditions (19). Functions
T(w, 1), (i = 1, 2, 3) correspond to statements (18). For
writing boundary value problems for Eq. (40) and (42),
initial conditions (20), boundedness conditions (22), and
the boundary condition for the boundary of region > R,
t >0 free of stresses (41) and (43) should be added. When
conducting numerical experiments for different thermal
heating (or cooling) conditions specified in (18), Egs. (40)
and (42) admit Laplace transforms that permit passage
to linear boundary value problems for displacements
in the image space and, after finding them, writing
all (nonzero) components of stress and strain tensors out.

Following passage to the originals, it becomes possible to
reproduce the complete picture of the dynamic response
of viscoelastic body to thermal shock. For such purposes,
partial differential equations (34), (36), (38) can also
be used; moreover, it then becomes possible (which is
more interesting) to go straight to generalized models for
Egs. (40) and (42). In [2], the analytical method for finding
exact operational solutions to such generalized equations
is developed, which ultimately permits a description of the
impact of the region topology (by fixing m in the problem
solution) on the magnitude of viscoelastic temperature
stresses. In practical terms, the latter is of considerable
interest for many fields of science and technology [3—6].

Another new approach based on deviatoric relations,
which also provides a dynamic formulation of the
thermoviscoelastic problem, can be mentioned here.
We consider this approach for Cartesian coordinates.
From (32) and (33), the following is obtained:

26—y _26(+y)
(—2v) = (1=2v)

X Oy [Ti(z,t)—To]— ;G

c_.(z,t)=

x (44)
rlx
t

X Iexp {—@} g, (z,1)dt.
rlx

0

We use the operational method to find € (z, p)
from (44) and substitute the resulting relation into the
operational form of the equation as follows:

0%c 02

zZZ
d o2

0z2 €22)

After long transforms, the following equation of
a new type is obtained:

%o 1

zZZ

. 62622 _
oz2 vgw or?
e ]

2 2
ot vew Trlx

1+v
=——01p
1-v

X

myn,

(45)
T (17 P%)

0% ¢
x 7J'exp[—(m2 /3T M~ ’C)] G, (z,1)dt+
0

0% |
x 7jexp[—(mz /3t )t~ T):'OLT |:Ti(Z,‘t) —T0:|d‘t,
0
z>1,t>0.

2(1- 2v) 1+v

30-v) 2oy
Equation (45), which generalizes the well-known
Danilovskaya equation for elastic bodies [7] to
viscoelastic bodies, provides further development of the
above problem (within the Maxwell medium framework).
For the Kelvin medium, we have the following equation:

Here, m =
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2
0°c,, _ 1 y
2 2
oz M ix Vew
2 t mzp*
—2I GZZ (z,t)dt+ X (46)
0 ml rlx 1%x

52
_2f [ }aT[T(z -1, |dt.
0
For numerical calculations, for example, based
on Eq. (45), it is reasonable to pass to dimensionless
quantities using the following formulas:

mTx

2
Vow (2—1) Vit

E= ,T= ,
a a
2(1-2v) (1+v)
31-v)t, (V2 /a)’ A=v)3ty, (V2 /a)’
_ 2Gar(T,, —TO)(1+v) 0= o_(z1)

T (1-2v) O (50 = Sp
_LEn-T
W,-(i,r)——T 7

am

By =

2:

Then Eq. (45) takes the following form:

2
0 Oge
o2

2
_8 O

_#W+
ot

ot?

. (47)
+ By [exp[B, (t )] 05 (1) + W (ET) |dr
0

In this form, the equation seems more convenient for
Laplace transforms in the image space since it contains
a convolution-type summand (which is convenient for
applying the Laplace transform).

We find the operational solution of Eq. (47):

c—sga(a,m%p,/%ﬁ(o,p)x
< exp{ P+ é)J%}d&'—
0 2

p B BzW y

p [T p

1
2
xTexpl: P B1+B2}d§’—
g P,

L prBitBy g,
2p o+, & p)

p+B+B, dE’
+B, '

(48)
pE'-¢)

g
x jexp[—p(& -g)
0

The given representation, which is characteristic
for dynamic problems of thermoviscoelasticity, differs
from conventional representations (with originals) in
tables [8]. The key issue in finding the original of the
complex representation (48) is the preliminary obtaining
of'its origin

Wz-(a,a',p)=iexp{—yi@,a’) /p P BZ} (49)
)4 P+B,

Here, the approach developed in [2] for complex
representations can be used. For this, the Riemann—Mellin
integral is applied with allowance for function (49)
having two branching points. We omit long calculations
and provide the final result:

By
1 1
¥ (5,E,1) = 1__£X+l3 exp[ —(x +B,)7]x
X sm{yl(ﬁ, é)(x+B2) }dx}x (50)
xn[r—yi(é,i')]-
Here,
(é+a’): i=1,
v, (6,€)=1(E' -8, i=2,
(g_g): i=3,

n(z) is the Heaviside function. Then the origin of
representation (48) can be written out:

Oge (6,7) =W (1) -
aW(o 7) o
-aajdgj oY (5,8, T T)dY -

row ,, (5D
.a&jdgj EDy e )i +

aW(gr)
+ aajdq ¥, (6,8, T—T)dT.

Other coordinate
similarly.

Finishing this part of the theory of dynamic
thermoviscoelasticity, generalized Egs. (16) and (17)
for the elastic medium should be compared with
Eqgs. (40), (41) for the Maxwell model and (42), (43) for
the Kelvin model for a viscoelastic medium. Here, the
influence of viscosity and its contribution to generalized
thermomechanics is clearly shown. In fact, the above
relations (as well as (45), (46), and (51)) open a promising

systems can be considered
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scientific direction related to investigation of the thermal
response of viscoelastic media to heating (or cooling)
in terms of dynamic viscoelasticity. For example, (51)
can consider numerous cases of heating (cooling) in the
framework of model problems (9) with different kinds
of heat flow: homogeneous, inhomogeneous, pulsed,
pulsating, periodic, aperiodic, etc. Each case of this study
represents independent scientific research involving
not only thermomechanics, but also computational
mathematics, and especially operational calculus in
finding the origins of complex representations. Here it
should be noted that such solutions to dynamic problems
are practically not covered in the literature. Further
studies of the above problem consist in developing
generalized model representations of the thermal reaction
of viscoelastic media for locally nonequilibrium heat
transfer processes [9—15].

CONCLUSIONS

In the paper, new model representations of
integro-differential form for dynamic and quasi-static
thermoviscoelasticity are simultaneously proposed for
various cases of thermal effect on viscoelastic bodies
in Cartesian, cylindrical, and spherical coordinate
systems. The given relations permit the study of
analytically numerous practical cases of thermal
reaction of viscoelastic medium (viscoelastic bodies
of canonical form) within the framework of linear
rheological Maxwell and Kelvin models in terms
of conventional Fourier phenomenology on heat
propagation in solids. They can be automatically
extended to locally nonequilibrium heat transfer
processes in terms of the Maxwell-Cattaneo—Lykov—
Vernott phenomenology.
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